

Laboratory Equipment

for milk and food testing

Contents

Preface

Funke-Dr. N. Gerber, Partner of dairy industry Innovations for milk analysing since 1904	5
Sampling and sample preparation	7
Butyrometric determination of fat content according to Dr. N. Gerber A comprehensive description by Dipl. Chem. Alfred Töpel	10
Gerber special methods Fat determination of cream, ice-cream, cheese etc. – a short description of all special methods	15
Fat determination (Butyrometer) Butyrometer – the entire scope of supply dearly arranged	17
Fat determination (accessories) Tools and utensils for fat determination	21
Milk laboratory centrifuges Principles and advantages of various Gerber-Centrifuges by DiplIng. K. Schäfer	28
Fat determination (equipment/centrifuges) Centrifuges, water baths, safety reading lamp, etc.	31
LactoStar (routine analytics) A detailed description of measuring principle and handling of LactoStar by DiplIng. K. Schäfer and Dipl. Phys. W. Spindler	35
Protein determination Equipment for nitrogen determination according to Kjeldahl	40
pH-measurement, equipment pH-meters and accessories for pH-determination	41
Titration apparatus/acidity determination	43
Sediment tester Filter papers, Sedilab, Revamat etc.	45
Reductase test Utensils for colony testing	46
General laboratory equipment Butter melting beaker, test spoon, spatula, aluminium foil bunsen burner, refractometer etc.	47
Laboratory balances Balances and moisture tester	51
Universal ovens (incubators, cooling incubators) The scope of supply tabular arranged	52
Laboratory furnaces	54
Viscosity determination	54
Inhibitor detection	54
Density measurement Hydrometer/Lactodensimeter	55

Thermometers/Dairy thermometers	58
Freezing-point measurement A focus theme of Funke-Gerber with detailed description: measurement principle, procedure, errors etc. by DiplIng. K. Schäfer and Dipl. Phys. W. Spindler	61
Laboratory equipment Bacterial colony counters, autoclaves, magnet stirrers, microscopes	74
Laboratory glassware	80
Laboratory utensils	84
Detailed product listing	88
Terms of delivery and payment	92

lin

FUNCE

6

AAA

Ĥ,

T_I

ŗ

Funke-Dr. N. Gerber Labortechnik GmbH Partner of Dairy Industry since 1904

For 95 years Funke-Gerber has been an important partner both of German and foreigen diary industry. Laboratory equipment for the analysis of milk and foodstuff is one of our most important activities.

We are still mainly involved in manufacturing of centrifuges, butyrometers and other equipment for the determination of fat according to Dr. N. Gerber. In addition to this classical field, our company has been producing modern electronic equipment for milk analysis for 15 years.

The freezing point determination with the series "CryoStar" is highly appreciated due to its precision and reliability which is why many dairies and institutes have been using it for years.

The new device "LactoStar", that was developed to determine constituents of milk routinely has opened up a new era of routine analytics.

Our present expert knowledge and a continuous development of our products make Funke-Gerber an important partner for dairy industries.

There is a trusting cooperation with many business partners for decades. They are representing Funke-Gerber

in almost al countries of the world and assure the global presence that is necessary to guarantee supply of our products to our customers.

Funke-Gerber has been standing for quality, reliability and continuity since 1904.

Products:

The company develops, manufactures and sells the following equipment worldwide:

- Equipment and accessories for "Fat Determination according to Gerber": Centrifuges, water bathes, reading lamps, butyrometers
- □ Freezing point determination unit "CryoStar"
- □ Analyzer for milk constituents "LactoStar"
- $\hfill\square$ General laboratory equipment

Activities:

Turnkey installation or design of complete laboratories in the special fields of:

- □ Milk processing industry
- □ Dairies, milk collecting centers
- □ Cheese and butter plants, factories for ice-cream, condensed milk and powdered milk

Company Profile Founded: 1904

Managing director: Dipl.-Ing. Konrad Schäfer Authorized signatory: Dipl. oec. Georg Hörnle

Address:

Funke-Dr. N. Gerber Labortechnik GmbH Ringstraße 42 · D-12105 Berlin

 Telefon:
 (+49-30) 702 006-0

 Fax:(+49-30) 702 006-66
 E-Mail:

 funke-gerber@t-online.de

Milk sampler

nickel-plated brass, with valve for automatic drainage

3000	1 ml		
3001	2 ml		
3003	5 ml		
3004	10 ml		
3007	20 ml		
3008	40 ml		
3010	50 ml		
3011	100 ml		

Milk stirrer

stainless steel, disk perforated, Ø 160 mm, 750 mm long

3021

Dipper

handle ca. 50 cm long

3030 125 ml aluminum with spout

3031 250 ml aluminum with spout

Dipper

3033	130 ml stainless steel, 300 mm long
------	-------------------------------------

3034 250 ml stainless steel, 400 mm long

3035 450 ml stainless steel, 400 mm long

Milk sample bottle

glass 50 ml, DIN 12835 with frosted-glass pane

3040

Milk sample bottle

PP 50 ml for LactoStar (see 3560)

3041

3042 Rubber sealing stopper for 3041

Rubber stopper

for 3040

3050

Cleaning brush

for 3040/3041

3080

Wire cradle

for 50 bottles, each 50 ml (3040/41), plastic-coated wire

3091

Cheese trier

chrome-nickel steel, with plastic handle

3120	110 x 9 x 13 mm
3121	125 x 14 x 19 mm
3122	140 x 17 x 21 mm

Low-cost cheese trier

120 x 11 x 14 mm, with metal handle

3124

Milk-powder collector

for ca. 28 x 385 mm, ca. 230 ml, nickel-plated brass

3125

Butter trier

chrome-nickel steel, with wooden handle

3130 240 mm bore length

3131 300 mm bore length

Laboratory blender

2 speeds and timer 1–60 Sec., 230 V/50 Hz

3135 with 1.2 I glass container

3136 mit 1 I stainless-steel container

Laboratory grinder

for preparing cheese samples etc.

3137

BagMixer 400

capacity: 80-400 ml, 220 V/50 Hz, 17 kg, 40 x 22 x 24 cm

3140

Disposable plastic bag

3141 400 ml, sterile, suitable for 3140

3142 Filter bags, 400 ml, sterile

3143 Bag clasps

3144 Stand for 12 bags

Butyrometric Determination of the Fat Content in Milk according to Gerber

Dipl.-Chem. Alfred Töpel

The butyrometric determination of the fat content in milk (the Gerber method) was developed in 1892 by Dr. N. Gerber and was incorporated into official regulations in 1935 as a sulphuric acid process. The rapid method of testing appears both in German standards (e.g. DIN 10310) and international standards (e.g. ISO 2446 or IDF 105).

The butyrometric determination of the fat content in milk according to Gerber is a quick method of testing and is still used today despite the introduction of automated methods of determining the fat content of milk in rapid-test dairy laboratories. The advantages of the Gerber method over the modern quick-test methods are:

- There is no need to calibrate the measuring gauge (which is time-consuming).
- The investment costs are relatively low, as are the costs of carrying out quick tests on individual samples.
- It can be used for all types of milk.

The disadvantages are in the use of the very aggressive concentrated sulphuric acid, which involves taking special precautionary measures, and the need to dispose of the sulphuric acid mixture later in an environmentally suitable way.

The Principles of the Method

The method involves separating off the fat into a special measuring vessel called butyrometer, determining its volume, and giving it as a percentage by mass. The fat is in the milk as small globules of various diameters from 0.1 to 10 micrometers. The globules of fat form a consistent emulsion with the milk liquid. The globules of fat are surrounded by a protective coating, a fat globule membrane of phospholipides, fat globule membrane coat protein and hydrate water. This protein coating around the fat globules coat prevents them from coalescing and stabilizes the emulsified state.

In order to separate off the fat completely we must destroy the protective coating on the fat globules. This is done with concentrated sulphuric acid of 90 to 91 mass %. The sulphuric acid oxidizes and hydrolyzes the organic components of the fat globule protective coating, the lactalbumin fractions and the lactose. A heat due to dilution is produced and also a strong heat die to the reaction. The butyrometer gets quite hot. The oxidation products turn the resulting solution brown. The fat thus released is then separated by centrifuging, whereby the addition of amyl alcohol makes the phase separated easier and a sharp delineation is produced between the fat and the acid solution. The fat content of the milk can be read off on the scale on the butyrometer as a mass content in %.

Application

The process can be used on raw milk and treated milk with a fat content of 0-16%, and for milk which contains a suitable preservative as well as for homogenized milk.

The Chemicals Needed

Sulphuric Acid, H_2SO_4 Requirements: Density to 20 °C (1.818 \pm 0.003) g ml⁻¹ colorless or only slightly colored and free from any substances which might have an influence on the result

Danger Symbol

Degree of Danger

C₂ R 35 S 2 - 26 - 30

Note:

The required density is the equivalent of a 90 to 91% mass. Stronger or weaker concentrations are to be avoided. At 65 °C any stronger concentrations of sulphuric acid attack amyl alcohol, cause dehydration and form olefine, and this influences the result. Weaker concentrations reduce the oxidation effect. The fat globule coat is not completely destroyed and this can lead to the formation of lumps.

Amyl Alcohol for the Determination of the Fat Content in Milk according to *Gerber* Isomer Mixture of 2-Methylbutane 1-ol and 3-Methylbutane 1-ol

Requirements:

Density at 20 °C, (1.811 ± 0.003) g ml⁻¹

Boiling points: 98% (volume part) has to be overdistilled at a temperature of between 128 °C and 132 °C at 1 bar. The amyl alcohol must not contain any substances which could influence the result.

Instead of amyl alcohol, a substitute can be used provided that it would bring about the same result as would be achieved using amyl alcohol.

Note:

lsomer amyl alcohols have different distillation points: 2-methylbutane-1ol 128 °C and

3-methylbutane-1-ol 132 °C.

Of the 8 known isomer amyl alcohols, only this mixture is appropriate for the Gerber method. Contamination with the other isomer amyl alcohols, particularly with tertiary amyl alcohol 2-methylbutane 2-ol produce false results. Too high a fat content is given.

Danger Symbol

Degree of Danger

Xn R 10-20 S 24/25 VbF A II

Appliances Required

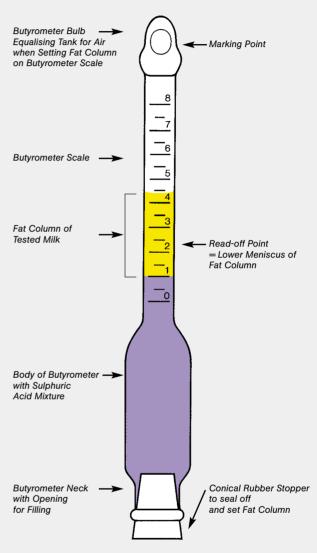
1. Calibrated butyrometer with suitable stopper DIN 12836-A 4, DIN 12836-A 6, DIN 12836-A 8, DIN 12836-A 5

2. Pipette DIN 10283-p for milk or pipette DIN 12837-A for milk

3. Pipette DIN 12837-B or measuring tap 10 ml for sulphuric acid (Fig. 3)

4. Pipette DIN 12837-C or measuring tap 1 ml calibrated for amyl alcohol

5. Centrifuge for determining the fat content with revolution counter, heatable (Fig. 1)


When used under full load this centrifuge must be capable of producing a centrifugal pressure of (350 ± 50) g on the inside of the butyrometer stopper after a maximum of two minutes. With a rotation radius of e.g. (26 ± 0.5) cm up to the inside of the butyrometer stopper, i.e. the distance between the point of torque and the butyrometer stopper, this centrifugal speed is reached at a rotor speed of (1100 ± 80) min⁻¹.

6. Tempering device for butyrometers, e.g. water bath (65 \pm 2) °C

With a heated centrifuge you can use a bushing in the centrifuge to attach the butyrometer in the water bath. The temperature at the read-off must be (65 ± 2) °C.

Preparation of the Test Specimen

The milk in the specimen bottle is heated up to 20 °C and thoroughly mixed by giving it a careful shake. The idea is to bring about an even distribution of fat and to prevent any froth and any tendency of the milk to butter.

Butyrometer DIN 12836 for determining the fat content according to Gerber

Milk fat is lighter than water and creams if allowed to stand. A layer rich in fat accumulates on the surface. Stirring and careful shaking bring about the original distribution.

If the layer of cream cannot be evenly distributed in this way, the milk should be slowly heated up to 35-40 °C, during which it is carefully turned, until a homogenous distribution of fat has been obtained. The milk is then cooled to 20 °C before being drawn up into the pipette. Froth breaks open the coating of the fat globules. The

milk can begin to turn to butter when stirred and the fat is then no longer able to be evenly distributed.

At a temperature of 35 to 40 °C the fat liquefies and the process of distribution is speeded up.

After the temperature has been set, the milk is allowed to stand to three or four minutes so as to allow any pockets of air to disperse.

When filling with sulphuric acid make sure you wear goggles and rubber gloves.

The gauges to measure volume are set at 20 °C. Any variations in temperature will influence the volume. Air pockets reduce the density and therefore the mass of the quantity of milk thus measured.

Conducting a Test = How to Go about It

the same milk specimen must be tested twice.

- Place two butyrometers in a clamp (butyrometer stand). With the measuring tap, put 10 ml sulphuric acid into the butyrometer without touching the neck of the butyrometer (see Fig. 3).
- Turn the bottle with the specimen of milk carefully upside down three or four times and then immediately pipette 10.75 ml of milk into the butyrometer so that the milk does not touch the neck of the butyrometer, and so that the milk is not allowed to mix

with the sulphuric acid. This is done by leaning the tip of the pipette laterally as deep as possible on the wall of the butyrometer and the milk is simply layered over to the sulphuric acid. (Fig. 4)

When the Gerber method was first introduced, 11 ml of milk were used. By reducing this to 10.75 ml the fat content arrived at degrees more closely with the results of the reference method. If you wet the buty-rometer neck with milk, some of it will stick to the side.

The sign of a good layering is a clear dividing line between acid and milk without a brownish-colored edge.

3. 1 ml of amyl alcohol is pipetted on to the milk (or inserted by measuring tap).

Thanks to the low density of the amyl alcohol, the two mixtures do not mix.

- The butyrometer is closed with the stopper without mixing the two liquids.
 As a rule the lower end of the stopper comes into contact with the liquid.
- 5. The butyrometer is placed into a butyrometer casing with the bulb downwards. Shake the butyrometer quite vigorously until the two liquids are completely mixed. Keep your thumb firmly pressed down on the butyrometer stopper. Turning the butyrometer several times up and down allows the sulphuric acid still in the bulb to disperse.

When the liquids are mixed, a considerable amount of heat is given off. The gas built up in this way can cause the stopper to shoot out or the butyrometer can even break.

The butyrometer casing is merely a safety precaution. Instead of using a casing, the butyrometer can be wrapped in a cloth.

To lax shaking of the butyrometer or unnecessarily holding it in a slewed position inhibits quick mixing and therefore also the rapid oxidization of the whole of the liquid and thus can ruin the careful work done trying to get the layering right.

6. Immediately after the mixture has been shaken and turned upside down a few times, the butyrometers, still hot and with the stopper pointing downwards, are placed into a casing inside in the heated Gerber centrifuge, whereby it is essential that the butyrometers are positioned exactly opposite to each other.

The butyrometer in the casing is shaken (goggles and rubber gloves must be worn).

Beforehand however, the stopper should be turned to set the column of fat at the height of the expected level of fat. After setting the time on the centrifuge, the process can now be started. After reaching a centrifugal pressure of (350 ± 50) g, usually after one minute, the corresponding number of revolutions (1100 ± 50) per minute should be maintained for four minutes.

The centrifuge must be fitted with a lid interlocking. After the centrifuging time has been reached, the brake for the rotor system automatically comes on.

 The butyrometers are now removed from the centrifuge, taking care not to tip them, and placed in a water bath (heated up to 65 °C) with the stopper downwards, for a few minutes.

It is important to maintain an exact temperature so as to obtain accurate results. Only a read-off at 65 °C will give you an exact result. If the temperature is too low, the volume of the column of fat is reduced and you get a fat content reading which is too low.

8. After the butyrometer is removed from the water bath it should be kept in a vertical position at a height where the meniscus of the column of fat is at eye level. With the help of the stopper position mark the demarcation line between residual mixture and fat at a whole line of the butyrometer scale and read off the height of the fat column at the lowest point of the meniscus. If too much time elapses before the reading is taken, the butyrometer must be placed in the water bath again.

If your eye and the meniscus are not at the same level, you will get a wrong reading caused by parallaxis.

Result and Degree of Accuracy

The result should be read off to half a scale point, i.e. to 0.05%. It is not possible to obtain a more exact result with whole milk butyrometers. If the meniscus is touching the graduation point, then the result is accepted as such (Fig. 7a). If the meniscus is between graduation points, then the lower value is taken (Fig. 7b).

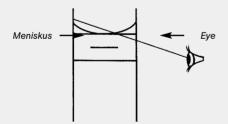
The difference between the readings from both buty-rometers must not be greater than 0.10 \%, i.e. the reproducibility is 0.10 %.

When recording the result you must add the note "Fat content according to Gerber". If the two specimens differ by 0.1%, then the mean value of both readings is taken.

Specimen 1: 4.2% Specimen 2: 4.3% correct result: 4.25% fat content

If however, the two readings are 4.20% and 4.25% fat, then the lower value 4.20% is taken, on the principle that it is better to err on the side of caution.

The butyrometers are brought to the exact read-off temperature in the water bath.



The values can be read off accurately and exactly with the help of a safety lamp.

Determination of the Fat Content of Homogenized Milk according to Gerber

Treated milk is homogenized in order to prevent creaming. This involves reducing the globules of fat, which vary in size, to a fairly uniform diameter of 1-2 micrometers.

In the centrifuging process however, the separating effect is considerably lessened and therefore the specimen must stay longer in the centrifuge in order to completely separate the released fat.

Steps 1-8 are carried out as for the testing of nonhomogenized milk and the results are recorded. The butyrometer is heated up to 65 °C again for at least five minutes in the water bath, then centrifuged again for five minutes and the results read off as described above.

If the value obtained after the second centrifuging is more than 0.05% higher than the value after the first centrifuge, then the heating up and centrifuging is to be repeated another two times at the most. If the recorded value is higher than 0.05% or less compared with the initial result, then the highest recorded value is taken.

Example:

After the first centrifuging, the readings for the two specimens were 3.55% and 3.60% and after the second centrifuging they were 3.60% and 3.65%. The official result taken for the fat content of the homogenized milk is therefore 3.65%.

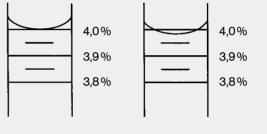


Fig. 7a: Correct reading 4.0% Fig. 7b: Correct reading 3.95%

If after the last two repeats, i.e. after the third and fourth centrifuging, there is still a difference of more than 0.05%, then the result of the particular test is to be discarded.

Alfred Töpel, Dipl.-Chem. has been a lecturer at Halberstadt Dairy Academy since 1960. Since 1992 he has been responsible for training at MLUA Oranienburg. He is also the author of the text book "The Chemical and Physical Aspects of Milk".

Specific Products: Cream, Ice-Cream, Cheese, etc.

Preface: The butyrometric determination of the fat content in milk has been increasingly replaced by other routine analyses (like for instance LactoStar or infrared spectroscopes). But such devices can either measure milk products like cheese, ice-cream, etc. only after a costly preparation of samples or they cannot measures them at all. The butyrometric procedure is a good alternative for routine analyses of such products.

1. Application

Determination of the fat content in milk and various milk products.

2. Volumes

If not stated differently, use the following quantities of chemicals and test samples:

Sulphuric acid:	10.0 ml (20 °C + 2 °C)
Amyl alcohol:	1.0 ml (20 °C + 2 °C)
Milk or milk products:	10.75 ml (20 °C + 2 °C)

Short Description of the Method for the Butyrometric Determination of the Fat Content

3.1 ... in Milk (acc. to Gerber):

Perfectly cleaned milk butyrometers, particularly free from fat residues, are filled in the following sequence: sulphuric acid, milk, and amyl alcohol. Milk and amyl alcohol are filled in by overlaying. They must not mix before shaking. After closing the butyrometer, the content is mixed thoroughly by shaking and turning the butyrometer upside down a few times. Adjust the stopper carefully so that the scale is filled but that there is no liquid in the bulb. Centrifuge the butyrometer in the heated centrifuge, put into a water bath of 65 °C for 5 minutes, mark the demarcation line between sulphuric-acid mixture/fat column at a whole line, read off the upper end of the fat column at the lower meniscus.

3.2 ... in Homogenized Milk

See above but centrifuge three times for 5 minutes. Heat the butyrometers in a water bath of 65 °C for 5 minutes between the process of centrifuging.

3.3 ... in Skim Milk and Whey

Use skim-milk butyrometers with narrowed scale acc. to Sichler.

Centrifuge two times and place butyrometers in water bath of 65 °C for 5 minutes between centrifuging.

3.4 ... in Condensed Milk (sugar-free)

First heat the condensed milk to 50 °C, allow to cool and then mix with water in a ratio 1:1. This dilution is tested like milk acc. to Gerber. Fat content = read value x 2.

3.5 ... in Buttermilk

(modification acc. to Mohr and Baur)

Pipette 10 ml of buttermilk instead of 10.75 ml and 2.0 ml amyl alcohol. Shake butyrometer after closing and centrifuge immediately. This prevents the disturbing plug-up. Read off after the second centrifuge. Fat content = read-off value x 1.075.

3.6 ... in Powdered Milk acc. to Teichert

Use powdered-milk butyrometers acc. to Teichert.

The butyrometer is charged with 10 ml sulphuric acid. Overlay 7.5 ml of water and 1 ml of amyl alcohol. Weigh 2.5 g of powdered milk in a weighing boat and transfer into the butyrometer through a funnel by using a fine brush. Close the butyrometer and shake thoroughly but put into the water bath of 65 °C a few times meanwhile. Centrifuge in a heated centrifuge 2×5 min. and read off the value after placing it into the water bath (5 min.).

3.7 ... in Cream acc. to Roeder (weighing method) Use cream butyrometer acc. to Roeder.

5 g of cream are weighed in the beaker in the stopper and filled into the butyrometer. Fill sulphuric acid through the upper opening of the butyrometer exceeding the upper rim of the glass beaker. After closing the butyrometer, place it into a water bath of 70 °C, shake it from time to time until the protein is completely dissolved. Add sulphuric acid to the beginning of the scale numbering and add another 1 ml of amyl alcohol. Close the butyrometer, shake and place it another 5 minutes in the 70 °C water bath. Then centrifuge for 5 minutes and temper in a water bath of 65 °C. Read off at 65 °C, adjust fat column to the zero point, read off at the lower meniscus.

3.8 ... in Cream acc. to Schulz-Kley (weighing method) Use cream butyrometer acc. to Schulz.

Fill into the butyrometer: first 10 ml sulphuric acid, then 5 ml water, ca. 5 g cream weighed by differential weigh-

ing using a syringe or weighing pipette fixed to the balance, 1 ml amyl alcohol. Mix the content of the butyrometer by shaking and turning it upside down.

Centrifuge the butyrometer in a heated centrifuge for 5 min. and read off after a tempering time of 5 minutes in a 65 °C water bath. Convert the read value to 5 g of weighed portion or correct according to the Cream Correction Table acc. to Schulz. Do not allow more than 15 minutes between overlaying of water and shaking due to a possible reduction of the reaction heat caused by this addition of water. The dissolution process must be completed under 60 sec.

3.9 ... in Cream acc. to Köhler (measuring method)

Use cream butyrometer acc. to Köhler.

Fill into the cream butyrometer: first 10 ml sulphuric acid d °1.820, then 5 ml cream, 5 ml water, 1 ml amyl alcohol. When you use a cream syringe, rinse it several times with water before you fill in the 5 ml of water. Close the butyrometer, shake and centrifuge for 5 minutes, read off after a tempering time of 3 minutes in a 65 °C water bath. Read off from the zero point.

3.10 ... in Cheese acc. to van Gulik

(See ISO 3433)

Use cheese butyrometer acc. to van Gulik.

First fill 15 ml sulphuric acid d °1.52 into the butyrometer acc. to van Gulik which must be closed at the end with the scale. Then fill 3 g of cheese by using a weighing boat and a fine brush and close the filling opening. Pasty cheese samples have to be weighed in glass beaker with holes that belongs to the van-Gulik butyrometer and then filled into the butyrometer. Place the closed butyrometer into a water bath of 70 °C - 80 °C. The scale must be upwards. Shake repeatedly until the cheese is completely dissolved. Then add 1 ml amyl alcohol through the scale opening and sulphuric acid approximately up to the 15% mark of the scale. Then close, mix, temper for 5 minutes in a 65 °C water bath, centrifuge for 5 minutes, place again in a 65 °C water bath, adjust fat column to zero point and read off absolute fat content. Reading is done at the lower end of the meniscus.

3.11 ... in Ice-Cream acc. to Köhler (measuring method) Use ice-cream butyrometer acc. to Köhler.

Remove icing or other rough particles (e.g. fruit, etc.) if there are any. Mix the ice-cream thoroughly after it has room temperature. If there are any air pocket, they can be removed almost completely by evacuation. Fill into the ice-cream butyrometer: first 10 ml sulphuric acid d °1.820, then 5 ml ice-cream, 5 ml water, 1 ml amyl alcohol. When you use a cream syringe, rinse it several times with water before you fill in the 5 ml of water. If the butyrometer is not sufficiently filled, add 2 ml of water. Close the butyrometer, shake and centrifuge for 5 minutes, read off after a tempering time of 5 minutes in a 65 °C water bath.

3.12 ... in Ice-Cream acc. to Roeder (weighing method) Use ice-cream butyrometer acc. to Roeder.

Weigh in 5 g of thoroughly mixed ice-cream into the glass beaker in the stopper and fill then into the butyrometer. Fill sulphuric acid d °1.53 through the upper opening of the butyrometer exceeding the upper rim of the glass beaker. After closing the butyrometer, place it into a water bath of 70 °C, shake it from time to time until the protein is completely dissolved. Add 1 m amyl alcohol and sulphuric acid up to the 10 % mark. Close the butyrometer, shake and place it another 10 minutes in the 70 °C water bath. Shake regularly during this time. Then centrifuge (7 min.!) and temper in a water bath of 65 °C. Read off at 65 °C, adjust fat column to the zero point, read off at the lower meniscus.

3.13 ... in Butter acc. to Roeder (weighing method)

Use butter butyrometer acc. to Roeder.

Weigh in 5 g of butter into the glass beaker in the stopper and fill into the butyrometer. Fill sulphuric acid through the upper opening of the butyrometer exceeding the upper rim of the glass beaker. After closing the butyrometer, place it into a water bath of 70 °C, shake it from time to time until the protein is completely dissolved. Add sulphuric acid to the beginning of the scale numbering and add another 1 ml of amyl alcohol. Close the butyrometer, shake and place it another 5 minutes in the 70 °C water bath. Then centrifuge for 5 minutes and temper in a water bath of 65 °C (approx. 5 min.). Read off at 65 °C, read off at the lower meniscus.

Appliances and Accessories for the Determination of the Fat Content of Milk according to Dr. N. Gerber

The basic implement for the GERBER process is the butyrometer. The ORIGINAL FUNKE-GERBER Butyrometers manufactured by us are well-known all over the world as reliable precision instruments. since Dr. N.

Gerber brought out the butyrometer named after him in 1892, we have systematically improved on it until it has reached its current flat design. We now manufacture high-quality flat butyrometers and make sure that we subject them to very strict standards of quality control. The exactness of the scale and the content of the body guarantees very accurate test results.

Funke-Gerber butyrometers are high-precision instruments with a flattened scale part, and are made out of acid-resistant glass in accordance with German and international standards (DIN, BS, IDF, ISO, etc.). Our experience of producing butyrometers stretches back over 95 years and enables us to produce high-quality instruments at reasonable prices. We produce butyrometers for milk and for all milk products, too.

In Germany and in some other countries butyrometers must be officially calibrated. They are then marked "(E)

10,75 ml of milk are pipetted into the butyrometer.

officially calibrated". Other butyrometers are not officially calibrated, but they are produced in exactly the same way and correspond to the same high standards of quality.

All butyrometers come in standard packs of 10. When ordering therefore, please order in units of 10.

Precision butyrometer

for liquid milk and vat milk, frosted wall behind scale, tolerance 0.025%, 0-4%: 0.05

3150

Butyrometer for milk

3151	0- 5%:0.1	
3152	0- 6%:0.1	
3153	0- 7%:0.1	100 M
3154	0- 8%:0.1	1
3155	0- 9%:0.1	1
3156	0 – 10%: 0.1	
3157	0 – 12%: 0.1	
3158	0-16%:0.2	
		-

Skim-milk butyrometer

according to Sichler, round scale, with open bulb 0-1 %: 0.01

3160

Skim-milk butyrometer

according to Kehe

3161	0-4%: 0.05

3162 0-5%: 0.05

Skim-milk butyrometer

according to Siegfeld

3164 0-0.5%: 0.02

Milk-power butyrometer

according to Teichert

3170 0-35%: 0.5, without accessory (3310)

3171 0-70%: 1.0, without accessory (3310)

Ice-cream and condensed milk butyrometer

weighing method acc. to Roeder

3180 0-6-12%: 0.1, including 3290, 3300, 3320

3181 0-15%: 0.2, including 3290, 3300, 3320

Cream butyrometer

(measuring method), for ice-cream

3189 0−15%: 0.2
3190 0−20%: 0.2

Cream butyrometer

weighing method acc. to Roeder

3201 0-30-55% 0.5 including 3290 3300 3320	3200	0-5-40%: 0.5, including 3290, 3300, 3320
	3201	0-30-55%: 0.5, including 3290, 3300, 3320
3202 0-50-75%: 0.5, including 3290, 3300, 3320	3202	0 – 50 – 75 %; 0.5. including 3290, 3300, 3320
3203 0-5-70%: 1.0, including 3290, 3300, 3320		

Cream butyrometer

weighing method acc. to Schulz-Kley, with closed bulb 0-5-40%: 0.5

JEE

3208

Cream butyrometer

acc. to Köhler (measuring method)

3210	0-40%: 0.5
3211	0-50%: 1.0
3212	0-60%: 1.0
3213	0-70%: 1.0

Butter butyrometer

acc. to *Roeder* (weighing method) 0-70-90%: 0.5%, including 3290, 3300, 3323

3220

Cheese butyrometer

acc. to van Gulik (weighing method)

3230 0-40%: 0.5, including 3290, 3300, 3321

Curd butyrometer

weighing method 0-20%: 0.2, including 3290, 3330, 3321

Food butyrometer

acc. to *Roeder* (weighing method) 0 – 100 %: 1.0, including 3290, 3300, 3320

3250

Free-fat butyrometer

for determining free fat in milk and cream, srew-capped, scale 0.002 g.

3252

Babcock bottle

0-8% for milk

3254

Babcock bottle

 $0\!-\!20\%$ for cream

3256

Babcock bottle

 $0-60\,\%$ for cream and cheese

3258

Patent closure FIBU

for all measuring butyrometers

3260 FIBU without key

Patent closure GERBAL

for all measuring butyrometers

3261

Patent closure NOVO

for all measuring butyrometers

Key

for patent closure FIBU

3270

Key

for patent closure GERBAL

3271

Key

for patent closure NOVO

3272

Rubber stopper, conical

for all measuring butyrometers, 11 x 16 x 43 mm

3280

Rubber stopper

for sealing the bulb of all types of weighing butyrometers, 9 x 13 x 20 mm

3290

Rubber stopper, with hole

for all weighing butyrometers, 17 x 22 x 30 mm

3300

Rubber stopper, without hole

for milk-powder butyrometers, 17 x 22 x 30 mm

3310

Glass nail

for milk-powder butyrometers

Weighing beaker for cream

for ice-cream and condensed milk butyrometers and cream butyrometers acc. to *Roeder*

3320

Weighing beaker for cheese, with holes

for Van Gulik butyrometers

3321

Weighing boat for butter

for butyrometers acc. to Roeder

3322

Butter beaker with 2 holes

3323

Cleaning brush

for butyrometer body

3324

Cleaning brush

for graduated stem of butyrometer

3325

Butyrometer rack

3330 for 36 samples (PP)

3331 for 12 samples (PP)

Shaking rack

3332 for 12 samples (PP)

Protective shaking hood

3340	for 36 samples (PP)
3341	for 12 samples (PP)

Pour plate

Plastic

3350 for 36 samples

3351 for 12 samples

Automatic dispenser, Permanent

with ground-in measuring chamber and stopper, single, DIN 10282

3390 10 m sulphuric acid

3391 1 ml amyl alcohol

Stand for permanent automatic dispenser

consisting of positioning board, stem and rataining ring with stem and retaining ring with sleeve

- 3400 10 ml for 1 permanent automatic dispenser
- 3401 1 ml for 1 permanent automatic dispenser
- 3402 10 + 1 ml for 2 permanent automatic dispensers

Automatic tilt measure, Superior

with rubber stopper and dispensing bottle, 500/250 ml

3420 10 ml sulphuric acid

3421 1 ml amyl alcohol

Volumetric pipette

with one ring mark

3430 10 ml sulphuric acid

3431 10.75 ml milk

3432 11 ml milk
3433 1 ml amyl alcohol
3434 5.05 ml cream
3435 5 ml water
3436 5 ml ream
3437 50 ml short type
3438 25 ml short type

Syringes

nickel-plated brass

3440	10.75 ml milk	
3441	10.75 ml milk rep. exch.	
3442	5.05 ml cream	0
3443	5.05 ml cream rep. exch.	640
3450	11 ml milk	and and
3451	Replacement cylinder 10.75 und 11 ml	
3452	5 ml cream	33
3453	Replacement cylinder 5 ml	1

Pipette stand

PVC, for pipettes of various sizes

Cleaning brush

for pipettes

3470

Laboratory goggles

3480

Agitated water bath

stainless steel with 18 tubes, 8 kg, dimension: 45 x 21 x 31 cm

3550

LactoStar

See detailed description on page 35

3560

Accessories: thermal printer: Art.-Nr. 7151 milk sample bottle: Art.-Nr. 3041

Replacement part: 3560-023 pump head

Butyrometer bucket

pressure-casted light metal, see SuperVario-N 3680

3631	1 piece
3631-12	set with 12 buckets
3631-24	set with 24 buckets
3631-36	set with 36 buckets

Babcock bucket

see SuperVario-N 3680

3632

Bucket for ADMI-tubes

see SuperVario-N 3680

Solubility index tube

see SuperVario-N 3680 ADMI, 50 ml, glass, graduated from 0 to 20 ml and mark at 50 ml

3634

Stand

for 6 buckets 3634

3636

Special solubility index tube

fitting in butyrometers tubes for table centrifuge "Nova Safety"

3637

Centrifuge tube

acc. to Friese with 2 stoppers

3638

Replacement butyrometer tube

for Nova Safety brass with flanged-edge brim, can be also used for water-bath insert, see item no. 3670, 3717

3641

Nova Safety

Reliabel and tested bench centrifuge with angular rotor for determination of fat according to Dr. N. Gerber.

Properties:

Automatic lid interlocking Automatic break (breaking time <8 s) Timer for centrifugation time (digital) Heating, thermostatically controlled to 65 °C Filling capacity: max. 8 butyrometers

Milk-laboratory centrifuges

Centrifuges for butyrometric fat determination according to Dr. N. Gerber

There are a number of characteristics that distinguish these special centrifuges from other laboratory centrifuges. Please pay attention to the following points when you want to buy and operate a centrifuge for fat determination according to Dr. N. Gerber:

1. Quiet running

The centrifuge is equipped with butyrometers. These are sensitive glass tubes with a long and narrow neck. It is important that a centrifuge runs with as little vibration as possible to avoid braking of glass and to increase the service life of the butyrometers. Basically we make a difference between the following types of centrifuges:

Centrifuge with flat lying butyrometers:

This type of positioning the butyrometer guarantees a gentle centrifugation for the butyrometers. Anyhow, it is important to discharge this type of centrifuge quickly. Otherwise the separated phases could intermix after centrifugation.

Centrifuge with angular rotor:

The angular rotor keeps the butyrometers in a fixed angle. Unfortunately, this position stresses the long and thin neck of the butyrometer. This type is mainly used in inexpensive small centrifuges.

Centrifuge with swing-out butyrometer buckets:

The flexibly mounted butyrometer buckets enable the butyrometers to swing out horizontally. The butyrometers are only stressed in their longitudinal axis. This is why you should prefer a centrifuge of this type to others.

1.3 Unbalance

The centrifuge should be equipped with an automatic unbalance switch-off. In case of broken glass (a broken butyrometer) or another unbalance, the centrifuge switches off automatically.

1.4 Lid interlocking

For reasons of safety, a lid interlocking is stipulated for bigger centrifuges in most European countries. But also small centrifuges are increasingly equipped with a lid interlocking.

1.5 Heating

On principle, it is possible to work with an unheated centrifuge. A heated centrifuge, however, prevents a cooling down of the butyrometers. This reduces the subsequent temperature-regulating time in a water bath and the analysis is more reliable. The temperature in the hydro-extracting vessel should be at least 50 °C.

1.5 Rotor speed

The determination of fat acc. to Gerber specifies a "RCA" (**R**elative **C**entrifugal **A**cceleration) of 350 g with a maximum deviation of \pm 50 g. Die RCA does not only depend on the rotor speed but also on the effective radius. The effective radius is defined as the distance between the center point of the rotor and the outer end of the butyrometer. This is why the rotor speed the various types of centrifuges differs according to their radiuses. However, it is important that the rotor speed is constant or only changes insignificantly (within the range of tolerance, see above), depending on whether the centrifuge is fully or only partially loaded. The RCA is calculated in the following way:

$$RCA = 1,12 \times 10^{-6} \times R \times N^{2}$$
$$N = \sqrt{\frac{RCA}{1,12 \times 10^{-6} \times R}}$$

R = effective horizontal radius, in millimeter; N = rotor speed in revolutions per minute [min⁻¹].

Example:

A centrifuge with an effective radius of 260 mm needs a rotor speed of 1100 rpm to be able to reach the specified RCA of 350 g.

2. Mounting

Place the centrifuge on a plane and solid surface. (e.g. solid table or platform). There should be a low degree of air humidity if possible. The ambient temperature should not exceed 30 °C.

3. Routine operation/maintenance

Charge the centrifuge in good balance if possible. Pay attention to position the butyrometers evenly.

Clean the centrifuge in case of broken glass immediately after it has stopped. This prevents unnecessary corrosion and guarantees a long service life.

Dipl.-Ing. K. Schäfer

SuperVario-N

Multi-purpose centrifuge for the dairy industry

A centrifuge known particulary for its extremely quiet running. Absence of vibration and swing-out butyrometers hangers positively influence the operating time of your butyrometers. This guarantees correspondingly good results (repeatability and comparability). This is why SuperVario-N is often used as a pilot centrifuge for calibration.

SuperVario-N can be used for the following tests due to its flexibility (rotor speed, temperature and time are programmable):

	Type of test	Rotor speed/RCA
1.	Gerber fat determination	1100/350g
2.	Babcock fat determination	750 / 165 g
З.	Determination of solubility (ADM	/I) 900 / 172 g
4.	Fat determination	
	acc. to Röse-Gottlieb*	600 / 77 g

* operation only when complying with the respectively valid safety regulations

Properties:

- □ Stainless-steel housing
- Programmable rotor speed from 600 rpm to 1130 rpm in steps of 10 rpm (corresponding to g-value of 77 to 372 g)
- □ Programmable heating up to 68 °C to 1 °C steps
- □ Automatic centrifugation time from 1 to 99 minutes
- □ Automatic safety interlocking of the lid
- □ Automatic switching-off of unbalance
- Automatic brake

Technical data:

Connected load:	230 V/50 60 Hz/1200 VA
Weight, empty:	26 kg
Total height incl. lid:	460 mm
Filling height:	370 mm
Rotor speed range:	600 bis 1130 rpm**
Temperature range:	ambient temperature up to 68°C

** The fat determination acc. to Gerber specifies a g-value of 350 g ± 50 g. Having a Relative Centrifugal Acceleration (RCA) of 371 g unloaded (noload-running) and 323 g fully loaded SuperVario-N complies exemplary with the standard specifications.

SuperVario-N

Multi-purpose centrifuge for all butyrometers. See detailed description on page 29

3680

Head A

Centrifugal head for 36 butyrometers or 18 Babcock bottles max.

3685

Butyrometer hangers, pressure-casted light metal, page 26 3631 1 piece 3631-12 12 pieces 3631-24 24 pieces 3631-36 36 pieces Babcock hangers: Item no. 3632 page 26

Head B

Centrifugal head B (protection vessel for 8 Mojonnier tubes)

3686

Mojonnier tubes: Item no. 3870, 3871, page 33

Head C

Centrifugal head C (6 solubility buckets max.)

3687

Bucket for solubility index tube: Item no. 3633 page 26 Solubility index tube, ADMI: Item no. 3634 page 27

WB 436-D universal water bath (digital)

Digital temperatur display (actual value), digital nominal temperatur control, PT 100 sensor (platinum sensors), Stop watch (1 to 99 min. with acoustic signal)

3707

Description for WB 436-D

Stainless steel interior housing, exterior housing made of powder-coated sheet steel, external heating – no interfering heating elements, overheating protection (also in case of empty container). Operation with distilled water possible.

Technical data:

Temperature rage: up to 100 °C Connected load: 230 V/50 Hz ... 60 Hz/1000 W Dimensions: 396 mm x 331 mm x 265 mm (L x B x D) Volume: 15.3 I Weight: 8.8 kg

WB 436-A Universal water bath (analogue)

See 3707, but with analogue temperature adjustment (turning knob), temperature display with thermometer (included in scope of supply), thermostatic heat controller.

3708

Description for WB 436-A

Stainless steel interior housing, exterior housing made of powder-coated sheet steel, external heating – no interfering heating elements, overheating protection (also in case of empty container). Operation with distilled water possible.

Technical data:

Temperature rage: to 100 °C Connected load: 230 V/50 Hz ... 60 Hz/1000 W Dimensions: 396 mm x 331 mm x 265 mm (L x B x H) Volume: 15.3 I Weight: 8.8 kg

Butyrometer stand for WB-436

Stainless steel, for 36 butyrometers

Mojonnier stand

stainless steel, for 10 Mojonnier tubes

3718
Universal shelf
Stainless steel
3727
Reductase insert
for 99 samples
3737
Lid for reductase
3747
Insert for "Delvotest"
3754
Butyrometer tubes
closed, brass, for butyrometer stand

3766-G

Butyrometer tubes

open, brass, for butyrometer stand

3766-O

Safety reading lamp

for safe reading of the butyrometers, antiglare light, lens with protective Plexiglas cover, adjustable height and lens distance, cord-operated switch, 230 V/50...60 Hz

3800

Shaking machine

For even, vigorous and reproducible mixing of the content of 4 extraction tubes acc. to *Mojonnier* 230 V/50 ... 60 Hz

3850 for 4 Mojonnier tubes

3851 for 6 Mojonnier tubes

Extraction tube

acc. to *Mojonnier* with cork stopper with round bulb

3870

Extraction tube

acc. to *Mojonnier* with cork stopper with flat-topped bulb

3871

Wooden stand

for 8 extraction tubes

LactoStar

A new standard for routine analytics Dipl.-Ing. K. Schäfer, Dipl.-Phys. W. Spindler

LactoStar – a quick and reliable method to determine the constituents of milk.

Constituents	Dissolution	Repeatability
Fat:	0.01%	± 0.02%
Protein:	0.01%	± 0.03%
Lactose:	0.01%	± 0.03%
SNF: (fat-free dry ma	tter) 0.,01%	± 0.04%
Freezing point:	−0.001 °C	± 0.002°C

Types of products:

20 different types of products (e.g. cow milk, raw milk, skim milk, sheep's milk, cream, etc.) can be calibrated and stored.

Operation:

Operation is easy and clear because it is menu-assisted.

Calibration:

Two-point calibration: The unit is calibrated with two reference milks. Calibration takes place automatically.

Measuring principle:

The measurement is based on a combined thermo-optical procedure, i.e. the milk sample (12 ml to 20 ml, adjustable) is pumped in two different measuring cells. It is then analyzed with the help of these two measuring units, an opto-unit (BlueBox) and a thermal unit (Red-Box). This means that the milk samples are analyzed by using to completely different measuring methods. These measuring methods are:

1.1 Optical measuring method (BlueBox)

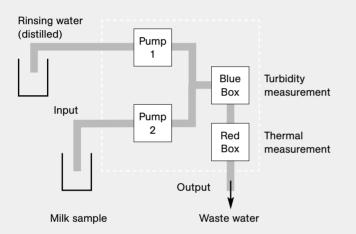
It is a turbidity measurement. The undissolved (visible) substances are regitered in this measuring unit, i.e. it measures the sum of fat and protein.

1.2 Thermal measuring method (RedBox)

By making use of termal effects, the fat content and the fat-free dry matter are determined at different measuring temperatures.

Technical data:

Connected load:	230 V/180 VA 50-60 Hz
	12 V DC
Sample throughput:	Up to 30 samples/h
PC-connection:	serial interface, 9.200 Baud,
	software included in scope
	of delivery
Printer:	parallel interface
Dimensions:	40 cm x 20 cm x 26 cm (W x H x D)
Weight:	ca. 15 kg


1.3 Computational analysis

You determine the content of protein by calculating the difference between: Result of tubidity measurement (fat + protein) minis result of thermal measurement (fat) P=T-F

The freezing point is calculated according to the following pattern: SNF-Protein=FP (sum of all dissolved substances)

Summary:

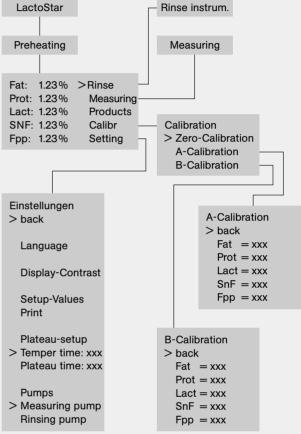
Combining two physically completely different measuring methods and completing it by a corresponding computing algorithm forms the basis of this instrument concept.

2.0 Construction

The instrument consists of the following functional units:

- 2.1 Two pumps
- 2.1.1 rinsing pump
- 2.1.2 sample pump
- 2.2 Optical measuring unit (BlueBox)
- 2.3 Thermal measuring unit (Red Box)
- 2.4 Printed circuit board/ CPU (Central Processing Unit)
- 2.5 Display
- 2.5.1 LCD, 4 lines with 20 characters each
- 2.5.2 Keyboard with just 3 buttons
- 2.6 Power supply

Menu tree/operation


You operate the instrument with just three buttons and is menu-assisted.

The most important menu items:

- □ Rinsing: Rinse measuring tract
- $\hfill\square$ Measuring: You start measuring with it.
- $\hfill\square$ Zero-calibration: You start an automatic zero-cali-

bration of the complete device (4 measuring routines of 12 ml each). The actual calibration for the constituents starts afterwards.

- □ Calibration A: You start an A-calibration with the set current A-values
- □ Calibration B. You start a B-calibration with the set current B-values.

Setting of the LactoStar

There is a control panel on the front of the device which has an LCD-display with four lines and three buttons. The display always shows the present position in the menu tree. You use the upper and the lower button to activate the indicated menu item (e.g. if you want to change a value). All menu items that are related to input of numbers show a question mark "?" instead of the equals sign "=". Then you can alter the indicated value. Example: You want to change the plateau time of 30 seconds to 25 seconds:

- □ First press the lower button until the display shows the checkmark in front of "Menu".
- $\hfill\square$ Then press the middle button to get into the menu.

Note: The sensitive area "Menu" is protected. You have to press "Enter" for approx. 3 sec. to get into it. The same is true for the area "Calibration".

Then press the lower button again until you "Plateau setup" appears on the display and you have a check-mark in front of "Plateau = \dots ".

- Press the middle button. You see "Plateau ? 30 s" on the display.
- □ Now you can increase or decrease the value with the left or right button until you see the value you want (e.g. 25 s).
- Press the middle button again. The question mark disappears and the new value is stored.

The LactoStar is pre-calibrated with a raw milk ex works and is delivered with standard settings. It has to be adjusted to the particular values of its concrete field of application and those valid for the respective laboratory. The LactoStar stores 20 different calibration data sets for various kinds of products. This enables you to switch from one kind of product to another without a new calibration (after corresponding calibration), e.g. from skim milk to cream and back. There are 12 different data sets for milks 4 data sets for whey and 4 data sets for cream.

Measuring start

First press the two external buttons until the checkmark appears in front of "Measurement" on the display. Put the sample bottle into the bottle holder in such a way that the suction pipe dips deep enough into the sample. The sample must not be foamy because air bubbles disturb the measurement considerably. The device needs about 12 ml of sample. Then press the middle button and the measuring process starts. After the measurement is finished you see the results for fat, protein, lactose and SNF on the display. If you press the down-button, you will see protein, lactose, SNF and the freezing point.

Calibration

It is necessary to calibrate the LactoStar to get accurate results.

Zero calibration

It is recommended to do a zero calibration once a week. It is necessary for a calibration of the entire hardware, i.e. it is necessary to compensate changes that were caused by wear-out of components, long-time drift and other effects.

A zero calibration is done as follows:

□ Repeated rinsing: Repeat rinsing until the water in the discharge hose is clear.

- □ Put a milk sample bottle with 50 ml distilled water into the bottle holder.
- Select the menu item: 'Zero Calibration'.
- □ Start zero calibration.

Note:

Zero calibration is a necessary hardware calibration. It is not a calibration of the constituents. This is done by Aand B-calibration. This is why you cannot expect that the measuring results for distilled water are set to 0.00% by zero calibration. Depending on the type of product a measurement with water does not necessarily indicate 0.00% for the respective constituents . but that there are be considerable deviations (<0.1%). This effect is the smallest in whole milk. It is adequately higher in other types of products like skim milk, cream, etc. **This does not influence the measuring accuracy for the respective type of product!**

Calibration

The actual calibration for constituents consists of two calibrations: A-calibration with a milk that is poor in constituents in all its parameters (A-milk), and the B-calibration with a milk that is rich in all constituents (B-milk). The A-milk can be extracted from the B-milk by diluting the B-milk with water (e.g. by 50% = 1:1 or $33^{1/3}\% = 1:2$ or $66^{2/3}\% = 2:1$, etc.).It is important that this dilution is done with an exact balance and is mixed well to avoid mistakes in calibration.

The device sets certain requirements to the B-milk. The essential constituents of this milk have to be similar to the milks that are measured, or it must have a similar matrix. The differences between the constituents of A-milk and B-milk should amount at least to 1%.

Attention: You have to calibrate for each type of milk (type of product).

Examples for calibration:

The unit is to be calibrated for instance for: Milk 1: raw milk measurements Milk 2: homogenized milk Milk 3: skim milk Milk 4: sheep's milk

First it is calibrated for the raw-milk measurement. You need about 200 ml of reference milk for a calibration (Aand B-calibration). Either you know the values of the respective constituents or you must determine them by reference analysis.

The LactoStar needs milk for 3 measurements for A- and B-calibration each. Therefore, take always a full sample bottle (50 ml) for calibration.

1. Selection of product

Set the instrument on "Milk 1". You can do this in the menu under "Products" (see "Menu tree" and "Setting of the LactoStar").

2.0 Preparation of A-milk

Prepare approx. 100 ml A-milk by diluting 50 ml of reference raw milk with for instance 20 % distilled water. (percentage by weight – use balance!). Mix thoroughly. It is possible to use also other mixing ratios which change the reference values for A-milk correspondingly. (It is particularly positive if the values for the constituents of the A-milk are not calculated but determined by the respective procedure (e.g. Gerber, Kjelhdahl, freezing point, etc.)

3.0 Entering values

3.1. Enter A-value Select menu item 'A-calibration' □ Enter value of constituent

3.2 Entering B-value

Select menu item 'B-calibration'

4.0 A-milk

4.1 Carry out two measurements with A-milk. This is a rinsing cycle with a A-reference milk. The measured values are of no significance.

4.2 A-calibration:

- □ Put the milk sample bottle with A-milk (50 ml) into the bottle holder.
- □ Start A-calibration. 3 measurements are taken, i.e. the process takes about 6 minutes.

5.0 B-milk

5.1. Carry out two measurements with B-milk. This is a rinsing cycle with a B-reference milk. The measured values are of no significance.

5.2 B-calibration:

- □ Put the milk sample bottle with B-milk (50ml) into the bottle holder.
- □ Start B-calibration. 3 measurements are taken, i.e. the process takes about 6 minutes.

Calibration for milk 1 is completed. Carry out calibration for the other types of products (milk 2, milk 3, milk 4) in the same way.

Then the unit is ready for measuring various milks. Obviously you have to select the "correct" type of product before measurement.

Attention: Avoid any passive dispersal of calibration liquids. Work speedily and without any breaks between the calibration steps.

Do not mix up the calibration solutions. Do **A-calibration with A-milk** first and then **B-calibration with B-milk**. Any mistakes result definitely in completely wrong calibrations of the device.

Note: Do **not** calibrate right after you cleaned the device with a cleansing solvent or another cleansing agent. Such agents extremely adulterate the measuring results. You have to rinse thoroughly after you used them because they strongly wet the surface of the measuring cells.

Properties of the unit

1.0 Products

The LactoStar can store 20 different data sets. There are 12 data sets for different types of milk, 4 for whey, 4 for cream. so you can switch from one product to another (e.g. from milk to cream, etc.) without doing a new calibration.

2.0 Interfaces

2.1 Parallel interface

The LactoStar has a parallel interface to connect standard printers. You may also connect a small thermal recording printer. The 6-V-port is in the rear of the unit.

2.2 Serial interface

You can connect a PC to the serial interface. This enables you to record the measuring results and to add other information (date, time, delivering vehicle, specific supplier's number, etc.). The recorded data can be used in other programs (e.g. spreadsheet or company software, etc.). You can also store and edit the calibration data. it is also possible to transfer the calibration profile from one unit to another one or to read the data from the unit and to store it. The necessary software is included in the scope of delivery.

Kjeldahl digestion apparatus

series heaters with modul-shaped tubular heating units and glass exhaust manifold to be connect to water jet pump or TURBOSOG exhaust terminal.

for 4 digestions with Kjeldahl flasks 500 ml
(10 kg - 650 x 250 x 300 mm)
for 6 digestions with Kjeldahl flasks 500 ml
(15 kg - 900 x 250 x 300 mm)
with water jet pump for glass exhaust manifold
TURBOSOG exhaust terminal

Kjeldahl distillation apparatus

series heaters with mould-shaped tubular heating units, Kjeldahl flask, Teitmair distillation tubes, cooling tubes, outlet pipes, Erlenmeyer flasks and stand equipment.

for 4 distillations, 500 ml 4210 (25 kg - 650 x 380 x 950 mm)

for 6 distillations, 500 ml 4211 (35 kg - 950 x 380 x 950 mm)

Kjeldahl digestion units

semi-automatic system aluminum digestion block, support in tiers, insert rack, exhaust equipment and digestion tubes, without controller

for 8 digestions 250 ml 4220 (16 kg - 380 x 380 x 650 mm)

for 20 digestions 250 ml 4221 (39 kg - 460 x 500 x 740 mm)

4225 Thermostat 0-420°C

Steam-heated distillation apparatus

for small number of samples with simple program flow: automatic NaOH dosing

4230 (25 kg - 440 x 690 x 340 mm)

for medium number of samples with varied program flow: automatic dosing of H_2O and NaOH and exhaust of distilled sample residues

4231 (27kg - 460 x 500 x 740 mm)

Laboratory pH meter

Electrodes are not in scope of supply

Knick 766

comfortable measuring instrument for pH, mV und °C: adjustment and control of the electrode, self-diagnostic, automatic temperature compensation,

4310 recorder connection, calibrated-data memory

Knick 765

4311 plus Rs 232 interface for computer and printer

Battery/pocket pH meter

Electrodes are not in scope of supply

Knick 911

highly developed dust, water and impact protected measuring instrument for pH, mV and °C with mounting clip for tables:

automatic calibration, identification of buffer solutionand temperature compensation, self diagnostics.

4316 **Knick 912** plus measurement data storage

Knick 913 plus data memory and interface 4217 for computer and printer

4319 Pt 1000-temperature sensor for pH 911, 912 and 913

Laboratory pH meter

WTW Level 1

routine laboratory pH/mV meter with automatic temperature compensation, calibration system,battery and mains operated

WTW Level 2

precision pH/mV meter plus RS 232-interface 4321 for computer and printer

Pocket pH meter

WTW 330

robust and water-proof pH/mVmeter with datamemory, automatic calibration, automatic temperaturecompensation.

WTW 330-SET

measuring instrument in professional suitcase with
integrated measuring set, holding clip, buffer solution
pH 4, pH 7, pH 10 and KCL solution, without electrode

WTW 340

measuring instrument with additional analogue and digital outlets RS 232

temperature sensor with clip 4335 for WTW 330 und 340

Combined electrode for milk

Inlab 408, suitable for milk and other liquids, fixed cable with DIN-plug

4350

Electrodes

	for puncture measurements
4360	Inlab 427 with plug head and DIN-plug-cable
4361	Inlab 427 without cable
	SE 104 for stick-in-measurements in cheese, meat
4370	and meat-products, fixed cable with DIN-plug

Combined electrode with temperature sensor

SE 102 combined electrode with integrated Pt 1000 temperature sensor, fixed cable with DIN-plug

4380

Buffer solution

250 ml in PE bottle

4390	pH 4.00			
4391	pH 7.00			
4392	pH 9.00			

KCL-solution, 250 ml in PE bottle

4400 3 mol/I+AGCI

Electrode stand

4410 for two electrodes, plastic

Cleaner for combined electrodes

250 ml in PE bottles

4420 AG-CI-diaphragma cleaner, Thiourea solution

4421 Protein solvent, pepsin-hydrochloric acid

Reactivation solution

250 ml in PE bottle, hydrofluoric acid

4422

Acidity Determination Titration equipment STANDARD

complete with storage bottle, rubber stopper, burette with automatic zero adjustment, sodalime tower with ascending tube, rubber pressure bulb, burette tip with pinchcock, one pipette 1 and 25 ml, Erlenmeyer flask 200 ml

4500 for milk: 0-20° SH

4501 for cream: 0-40° SH

for curd: 0-250° SH with porcelain mortar and pestle, pipette 2 ml (without pipettes 1 and 25 ml and Erlenmeyer flask)

Acidity Determination Titration equipment SIMPLEX

for milk and cream, complete with polyethylene bottle on a platic base, burette with automatic zero adjustment precision titration by button control, one pipette 1 ml and 25 ml, Erlenmeyer flask 200 ml

4520 for milk: 0-25° SH

4521 for cream: 0-40° SH

Titration equipment SIMPLEX

for general titration purposes, see above but without accessoires

4530 with burette 0 - 10 ml : 0.05

4540 with burette 0-25 ml : 0.1

4550 with burette 0-50 ml : 0.1

Protein titre apparatus

with storage bottle, for use with 25 ml milk, special burette with automatic zero adjustment, sodalime tower with ascending tube, rubber bulb, outlet tip, pinchcock, one transfer pipette 1 ml, 5 ml and 25 ml, 2 beakers, short type, 250 ml, 2 measuring pipettes 1 ml : 0.01

4660 0-6 ET: 0.02

Rapid burette

acc. to *Dr. Schilling*, Schellbach stripes, complete with storage bottle and base

4680	10 ml: 1/20
4681	25 ml: 1/10
4682	50 ml: 1/10

Milk tester SALUT

with 2 tubes, for alcohol coagulation test/alizarol test at delivery platform, for determining the freshness of raw milk

4700

4701 Replacement tube with hole

Salt test for butter and cheese

see no. 4530 and no. 4540, but with brown storage bottle

4760 for butter: 10 ml: 0.05

4770 for cheese: 25 ml: 0.1

Sediment tester SEDILAB

manual sediment tester for easy use, with clamp for tables, solid metal design, for 500 ml milk

Sediment tester REVAMAT

for serial testing at reception speed, throughput: approx. 800 samples/hour, sharply defined sediment images, for 500 ml milk, 220 V/50 Hz

4900

Sediment tester ASPILAC

pump type for direct suction from milk can, Plexiglas housing, for original filter papers, for 500 ml milk

4905

Filter papers

4910 with record surface, 1000 pieces

Filter, round

4911 32 mm, 1000 pieces

Reference table

4920 with 3 purity grades, German standard

Reductase test tubes

with ring mark

5040 10 ml and 21 ml

5041 10 ml

Rubber stopper

for reductase test tubes

Pipetting syringes

for determinig nutrient and dye solutions, self-priming, can be sterilized

5110 adjustable to 1 ml

- 5111 adjustable to 2 ml
- 5112 adjustable to 5 ml (for 10 ml see no. 8170)

Methylene blue tablets

5140 50 pieces

Resazurine tablets

5150 for LOVIBOND comparator, 100 pieces

LOVIBOND comparator 2000

for resazurine tests, housing for 2 test tubes for comparison with color disc

5160

Color disc

5161 for resazurine 4/9 with 7 standard reference colors

Test tube

5162 set of 4 pieces

Dry-matter calculator

nacc. to Ackermann, for milk

Butter-melting beaker

5400 aluminum, 30 g

5401 aluminum, 50 g

Tongs

5420

Glass stirrer

pestle-type, 140/6 mm

5430

Double-ended spatula

pure nickel, 150 mm

5440

Butter test spoon

Plexiglas

5450

Crystal quartz sand

5460 washed, 1 kg, calcined

5461 washed, 3 kg, shipping costs on request

Aluminum foil

150 x 190 mm, 1000 pieces

5470

Weighing dish

aluminum, Ø 75 x 30 mm with lid (numbered on request)

2

55

Bunsen burner

for propane (other types of gas on request)

5550

Infrared burner, up to 750°C

suitable for fast, contact-less heating (0.9 kg - 100 x 100 x 100 mm)

5571

5572 Power regulator

Spirit lamp

5580 glass

5581 metal

Water paper

for determination of moisture distribution in butter 40×78 mm, 1 box = 50 stripes

5600

Butter cutter

gauge 0.5 mm

Pocket refractometer

for measuring the degree of evapoation of milk and determining concentration in various spheres of application, incl. case. The internationally valid Brix scale allows direct determination of percentage of dry matter in weight

5610	0-32% Brix: 0.2%, for milk, fruit juice, soft drinks
5612	28-62% Brix: 0.2%, for juice concentrate
5613	45-82% Brix: 0.5%, for honey

Digital hand refractometer

0-45%: 0.1 % Brix, 1.3300-1.4100 nD: 0.0001 nD 0-60 °C: 0.1 °C temperature compensation automatically 0-40 °C (0.3 kg - 180 x 80 x 35 mm)

5614

Digital Abbe refractometer

1.3000 – 1.7200 nD: 0.0001 nD, 0 – 95 %: 0.1 % Brix 0 – 99 °C: 0.1 °C, LED display 590 nm, serial interface RS-232 and RS 422, 115/230 V, 50/60 Hz (5 kg – 140 x 275 x 300 mm)

5620

Bath/circulation thermostat E-5 JULABO

for internal and external tempering temperature range: 20 °C to 100 °C (depending on ambient temperature), dip opening 150 x 150/150 mm, (6 kg 170 x 330 x 350 mm)

Moisture tester MA 30

fully automatic determination of moisture or dry matter. 30 g: 0,01%, data interface RS 232 C (5,5 kg - 217 x 283 x 165)

5710	
5711	Foil press
5712	Aluminum round foil, 130 x 0.03 mm, 1000 pieces
	Glass-fiber filter for determining liquid,
5713	pasty and fat-containing samples, 80 pieces

Analytical balance

GLP/ISO protocol option, piece counting, formulation memory, percentage determination, RS 232 C interface, underfloor weighing, dust and splash-proof, including calibration weight.

5810 120 g : 0.1 mg

5811 220 g : 0.1 mg

Precision balance

piece counting, formulation memory, percentage determination, RS 232 C interface, plash-proof, including calibration weight.

5820 310 g: 0.01 g

5821 510 g: 0.01 g

5830 210 g: 0.001 g

Universal Ovens

Equipment	Тур	Ext. dimensions (W/H/D) [mm]	Int. dimensions (W/H/D) [mm]		Support rips for shelves/ Shelves supplied with over	Watt/Volt	Kg (Net)	Order- Num
Universal-oven "UM"	UM 100	470/520/325	320/240/175	14	2/1	600/230	20	6000
Thermostatic temperature con-	UM 200	550/600/400	400/329/250	32	3/1	1100/230	28	6001
trol, digital temperature display, passive through circulation	UM 300	630/600/400	480/320/250	39	3/1	1200/230	30	6002
passive through circulation	UM 400	550/680/480	400/400/330	53	4/2	1400/230	35	6003
	UM 500	710/760/550	560/480/400	108	5/2	2000/230	50	6004
	UM 600	950/920/650	800/640/500	256	7/2	2400/230	87	6005
	UM 700	1190/1080/650	1040/800/500	416	9/2	4000/400	121	6006
	UM 800	1190/1605/750	1040/1200/600	749	14/2	4800/400	170	6007
Universal-oven "ULM"	ULM 400	550/680/480	400/400/330	53	4/2	1400/230	35	6008
Thermostatic temperature con-	ULM 500	710/760/550	560/480/400	108	5/2	2000/230	50	8009
trol, digital temperature display, electrical blower	ULM 600	950/920/650	800/640/500	256	7/2	2400/230	87	6010
	ULM 700	1190/1080/650	1040/800/500	416	9/2	4000/400	121	6011
	ULM 800	1190/1605/750	1040/1200/600	749	14/2	4800/400	170	6012
Universal-oven "UE"	UE 200	550/600/400	400/329/250	32	3/1	1100/230	28	6013
Electronic temperature control	UE 300	630/600/400	480/320/250	39	3/1	1200/230	30	6014
(PID), digital watch, serial inter- face, passive through circulation	UE 400	550/680/480	400/400/330	53	4/2	1400/230	35	6015
lace, passive through circulation	UE 500	710/760/550	560/480/400	108	5/2	2000/230	50	6016
	UE 600	950/920/650	800/640/500	256	7/2	2400/230	87	6017
	UE 700	1190/1080/650	1040/800/500	416	9/2	4000/400	121	6018
	UE 800	1190/1605/750	1040/1200/600	749	14/2	4800/400	170	6019
Universal-oven "ULE"	ULE 400	550/680/480	400/400/330	53	4/2	1400/230	35	6020
Electronic temperature control	ULE 500	710/760/550	560/480/400	108	5/2	2000/230	50	6021
(PID), digital watch, serial inter- face, electrical blower	ULE 600	950/920/650	800/640/500	256	7/2	2400/230	87	6022
	ULE 700	1190/1080/650	1040/800/500	416	9/2	4000/400	121	6023
	ULE 800	1190/1605/750	1040/1200/600	749	14/2	4800/400	170	6024
Universal-oven "UP"	UP 400	550/680/480	400/400/330	53	4/2	1400/230	35	6025
Electronic temperature control	UP 500	710/760/550	560/480/400	108	5/2	2000/230	50	6026
with process controller (PID), programmable, serial and paral-	UP 600	950/920/650	800/640/500	256	7/2	2400/230	87	6027
lel interfaces, passive through	UP 700	1190/1080/650	1040/800/500	416	9/2	4000/400	121	6028
circulation	UP 800	1190/1605/750	1040/1200/600	749	14/2	4800/400	170	6029
	UL D 400	FF0/000/400	400/400/000	50	4/0	1400/000	05	
Universal-oven "ULP" Electronic temperature control	ULP 400	550/680/480	400/400/330	53	4/2	1400/230	35	6030
with process controller (PID),	ULP 500	710/760/550	560/480/400	108		2000/230	50	6031
programmable, serial and paral-	ULP 600	950/920/650	800/640/500	256		2400/230	87	6032
lel interfaces, electrical blower	ULP 700	1190/1080/650	1040/800/500	416		4000/400	121	6033
	ULP 800	1190/1605/750	1040/1200/600	749	14/2	4800/400	170	6034

Incubators/Sterilizers

Equipment	Тур	Ext. dimensions	Int. dimensions	Volume	Support rips for shelves/	Watt/Volt	Kg	Order-
		(W/H/D) [mm]	(W/H/D) [mm]		Shelves supplied with over		(Net)	Num
Incubator "BE"	BE 200	550/600/400	400/329/250	32	3/1	440/230	28	6035
Electronic temperature control (PID), digital watch, serial inter-	BE 300	630/600/400	480/320/250	39	3/1	500/230	30	6036
face, passive through circulation	BE 400	550/680/480	400/400/330	53	4/2	800/230	35	6037
	BE 500	710/760/550	560/480/400	108	5/2	900/230	50	6038
	BE 600	950/920/650	800/640/500	256	7/2	1600/230	87	6039
	BE 700	1190/1080/650	1040/800/500	416	9/2	1800/230	121	6040
	BE 800	1190/1605/750	1040/1200/600	749	14/2	2000/230	170	6041
Incubator "BP"	BP 400	550/680/480	400/400/330	53	4/2	800/230	35	6042
Electronic temperature control	BP 500	710/760/550	560/480/400	108	5/2	900/230	50	6043
with process controller (PID), programmable, serial and parallel	BP 600	950/920/650	800/640/500	256	7/2	1600/230	87	6044
interfaces, passive through circu-	BP 700	1190/1080/650	1040/800/500	416	9/2	1800/230	121	6045
lation	BP 800	1190/1605/750	1040/1200/600	749	14/2	2000/230	170	6046
Sterilizer "SM"	SM 100	470/520/325	320/240/175	14	2/1	600/230	20	6047
Thermostatic temperature con-	SM 200	550/600/400	400/329/250	32	3/1	1100/230	28	6048
trol, digital temperature display, passive through circulation	SM 300	630/600/400	480/320/250	39	3/1	1200/230	30	6049
passive initiagin circulation	SM 400	550/680/480	400/400/330	53	4/2	1400/230	35	6050
Sterilizer "SLM"	SLM 400	550/680/480	400/400/330	53	4/2	1400/230	35	6051
Thermostatic temperature con-	SLM 500	710/760/550	560/480/400	108	5/2	2000/230	50	6052
trol, digital temperature display,	SLM 600	950/920/650	800/640/500	256	7/2	2400/230	87	6053
electrical blower	SLM 700	1190/1080/650	1040/800/500	416	9/2	4000/400	121	6054
	SLM 800	1190/1605/750	1040/1200/600	749	14/2	4800/400	170	6055
Sterilizer "SE"	SE 200	550/600/400	400/329/250	32	3/2	1100/230	28	6056
Electronic temperature control	SE 300	630/600/400	480/320/250	39	3/2	1200/230	30	6057
(PID), digital watch, serial inter-	SE 400	550/680/480	400/400/330	53	4/2	1400/230	35	6058
face, passive through circulation								6059
Sterilizer "SLE"	SLE 400	550/680/480	400/400/330	53	4/2	1400/230	35	6060
Electronic temperature control	SLE 500	710/760/550	560/480/400	108	5/2	2000/230	50	6061
(PID), digital watch, serial inter-	SLE 600	950/920/650	800/640/500	256	7/2	2400/230	87	6062
face, electrical blower	SLE 700	1190/1080/650	1040/800/500	416	9/2	4000/400	121	6063
	SLE 800	1190/1605/750	1040/1200/600	749	14/2	4800/400	170	6064
Sterilizer "SLP"	SLP 400	550/680/480	400/400/330	53	4/2	1400/230	35	6065
Electronic temperature control	SLP 500	710/760/550	560/480/400	108	5/2	2000/230	50	6066
with process controller (PID),	SLP 600	950/920/650	800/640/500	256	7/2	2400/230	87	6067
programmable, serial and paral- lel interfaces, electrical blower	SLP 700	1190/1080/650	1040/800/500	416	9/2	4000/400	121	6068
	SLP 800	1190/1605/750	1040/1200/600	749	14/2	4800/400	170	6069
Cooling incubator "ICP"	ICP 400	558/967/486	400/400/330	53	4/2	500/230	68	6070
process controller (PID) from	ICP 500	718/1047/556	560/480/400	108	5/2	500/230	87	6071
0 to +60 °C, programmable,	ICP 600	958/1335/656	800/640/500	256	7/2	700/230	144	6072
serial and parallel interfaces, electrical blower	ICP 700	1198/1495/656	1040/800/500	416	9/2	750/230	178	6073
	ICP 800	1198/1895/756	1040/1200/600	749	14/2	1200/230	227	6074

Laboratory ovens

Heating and incineration up to 1100 °C, furnace casing of stainless steel high-grade insulation, short heating-up period, 230 V/50 Hz

Internal dimensions: 160 x 140 x 100 mm, 1.2 kW 6220 (18 kg - 340 x 340 x 420 mm) Internal dimensions: 240 x 250 x 170 mm, 3.0 kW 6222 (39 kg - 430 x 530 x 570 mm)

Discharge viscometer

This easy-to-use viscometer proved its value in internal viscosity measurements of yogurt, sour milk, sour cream, kefir and other products. The time needed to discharge is taken for the measure of viscosity.

6520 Including stand and two different slice nozzles

6521 Glass plate

6522 Timer for 6520

ViscoTester VT6R Haake

rotary viscometer for measurements pursuant to ISO 2555 and ASTM (Brookfield method)

- measuring range 20 ... 13.000.000 mPas (cP)
- acoustic warning for measuring range
- RS 232C interface
- set with 6 spindles, stand and carrying

6530 stand and carrying case are incl. in scope of delivery

Inhibitor Detection, Delvotest SP

6570 1 set for 100 samples

Delvotest plate test SP

6571 5 plates for 96 tests each

Lactodensimeter

Lactodensimeter are often used officially calibrated or officially calibrated with certificate. Please refer to our price list or contact us.

Lactodensimeter

for milk acc. to Gerber, large model, negative scale, 1.020 – 1.040: 0.0005 g/ml, with thermometer 10-40 °C in stem, T = 20 °C, 10-40 °C, approx. 300 x 28 mm

6600	standard model
6602-E	officially calibrated, thermometer 10-30°C
6603-ES	officially calibrated, with certificate, thermometer 10-30°C

Lactodensimeter

for milk acc. to Gerber, small model, negative scale 1,020-1,035: 0,0005 g/ml, T = 20°C, with thermometer in body 0-40 °C, approx. 210 x 17 mm

6610	standard model
6612-E	officially calibrated, thermometer 10-30°C
	officially calibrated, with certificate,
6613-ES	thermometer $10-30^{\circ}C$

Hydrometer

for milk pursuant to former DIN 10290 without thermometer, 1.020-1.045: 0.0005 g/ml, T = 20°C, approx. 350 x 25 mm

6620	standard model
6621-F	officially calibrated
0021 L	Unicially calibrated
6622-ES	officially calibrated, with certificate

Lactodensimeter

for milk acc. to Quevenne, 15-40: 1.0, with colored triple scale, T = 20°C, with thermometer 0-40°C, approx. 290 x 22 mm

6630

6631 without thermometer, approx. 210 x 22 mm

Hydrometer for buttermilk serum

DIN 10293, 1.014 - 1.030: 0.0002 g/ml, T = 20 °C, without thermometer, approx. 240 x 21 mm

6640	standard model
6641-E	officially calibrated

6641-ES officially calibrated, with certificate

Buttermilk tester

acc. to *Dr. Roeder*, 10-30: 1.0, with thermometer in stem, T = 20 °C, approx. 210 x 25 mm

6650

Hydrometer for condensed milk

without thermometer, T = 20 °C

6660 1.000 - 1.240: 0.002 g/ml, approx. 310 x 19 mm

6661 1.040 - 1.080: 0.001 g/ml, approx. 230 x 21 mm

Hydrometer for yogurt and chocolate milk

with thermometer in body, T = 20 °C, approx. 220 x 16 mm

6670

Hydrometer for brine/Beaumé

0-30 Bé: T = 15°C, approx. 240 x 17 mm

6680 without thermometer

6681 with thermometer, 0-40°C

Hydrometer for boiler water

DIN 12791, M 100, T = 20 °C, without thermometer, 1.000 – 1.100: 0.002 g/ml, approx. 250 x 20 mm

6690

Hydrometer for boiler feed water

acc. to Dr. Ammer, -1.2 bis +2: 1/10°Bé, approx. 300 x 22 mm

Alcoholmeter

with thermometer, 0 - 100 Vol.%: 1.0, T = 20 °C, approx. 290 x 16 mm

6710

Hydrometer for amyl alcohol

DIN 12791, without thermometer, T = 20 °C, M 50, approx. 260 x 24 mm, 0.800 – 0.850: 0.001 g/ml

6720

Hydrometer for amyl alcohol

DIN 12791, without thermometer, T = 20 °C, M 50, approx. 270 x 24 mm 6730 1.800 1.850: 0.001 g/ml

6731 1.500 1.550: 0.001 g/ml

Hydrometer

DIN 12791, for various liquids, M 50, without thermometer, T = 20 °C, approx. 270 x 24 mm

6740	1.000 1.050: 0.001 g/ml
6741	1.050 1.100: 0.001 g/ml
6742	1.100 1.150: 0.001 g/ml
6743	1.150 1.200: 0.001 g/ml
	0

Jar

for lactodensimeters, 265 x 35 mm Ø (inside)

6800

Stand

with cardanic suspension, hanging cylinder, 210/22 mm for lactodensimeters no. 6610-6613

Stand

with cardanic suspension, hanging cylinder with overflow, suitable for all lactodensimeters and hydrometers, incl. drip tray, tubes and pinchcock

6830

Dairy thermometer

with loop, 0-100 °C: 0.1, mercury filling, blue

7000

Dairy thermometer with loop, 0 – 100 °C: 0.1, spirit filling, red

7001

Dairy thermometer

in plastic case, with loop, boiling and impact resistant, floatable, 0 – 100 $^{\circ}\text{C}:$ 0.1, mercury filling, blue

7030

Dairy thermometer

in plastic case, with loop, boiling and impact resistant, floatable, 0-100 °C: 0.1, spirit filling, red

7031

Dairy thermometer

mercury filling, blue, as replacement for no. 7030

Dairy thermometer

spirit filling, red, as replacement for no. 7031

7041

Universal thermometer

-10-100 °C: 1.0, mercury filling

7045

Universal thermometer

-10-100°C : 1.0, spirit filling, red

7046

Refrigerator thermometer

-50 to +50 °C: 1,0, spirit filling, blue, in plastic case, with loop and hook

7060

Control thermometer

0 to +100 °C: 1.0, mercury filling, blue, 305 x 9 mm officially calibrated with certificate

7070

7071 uncalibrated

Low-temperature laboratory thermometer

-38 to +50 °C: 1.0, mercury filling, 280 x 8 x 9 mm

7081

Maximum-minimum rod thermometer

mercury filling, blue, 220 mm long

7095 -35 to -50 °C: 1.0

7096 -10 to -100 °C: 1.0

Psychrometer

acc. to *Fleischmann*, complete with 2 special thermometers, water holder, diagram for reading off RH

7100

Special thermometer

as replacement for no. 7100

7101

Polymeter

(hair hygrometer) for measuring RH and temperature, measuring range 0-100% RH, 0-30 °C, with scale for saturation vapor

7110

Digital thermometer 926

(Fig. with-stick/dipping sensor 7122) for daily measurements of temperature in food industry, measuring range -50 to + 350 °C: 0.1 °C (1 °C from 200 °C), high precision, ISO-calibration certificate against extra charge

7120

Stick-in/dipping sensors

7122	robust precision sensor, dia. 4 mm x 110 mm		
7123	Stainless steel sensor for food, dia. 4 mm x 125 mm		
	Needle sensor for fast measurements		
7124	without visible pinhole, dia. 1.4 mm x 150 mm		
	Sensor for frozen goods, screwing in without		
7125	pedrilling, dia. 8 mm x 110 mm		

TopSafe

protective cover against pollution, water, impact

Freezing-Point Determination

a subject of priority for

Funke-Dr. N. Gerber Labortechnik GmbH

K. Schäfer, Dipl.-Ing., and W. Spindler, Dipl.-Phys.

History

The German chemist Beckmann, known for the thermometer that was named after him, began to determine the freezing point of milk as early as 1895. He used this determination to identify alien water in milk. The American Hortvet applied this method very intensively in 1920 and improved essential features of it. The first thermistor-cryoscopes were introduced on the market in the sixties. However, they had to be operated completely manually. The first automatic thermistor-cryoscopes were available at the beginning of the seventies. With this development it was possible to determine the freezing point automatically – by touching a button.

A decisive improvement of thermistor-cryoscopy was made at the trade fair "FoodTec 1984": Funke-Gerber presented the first device with automatic calibration. Resulting from successful and intensive research and development work, another highlight could be presented at the "FoodTec 1988". Funke-Gerber introduced a fully automatic freezing-determination unit that had a capacity of 220 samples/ h.

By introducing indirect measuring of the freezing point (e.g. LactoStar) in routine analytics interest was mainly focused on reference devices that measured the freezing point according to the reference-analytical regulations. These devices have to meet strict requirements regarding measuring accuracy because they are used to calibrate routine devices. This is why Funke-Gerber has developed a freely programmable cryoscope with a resolution of 0,1 m°C. This device has already proven its precision and reliability in hundreds of laboratories all over the world.

Freezing Point:

The freezing point of pure water is the temperature at which ice and water are in equilibrium.

If soluble components are added to this liquid, the freezing point decreases (it is colder) because this reduces the ability of the water molecule to escape from the surface. Fat does not influence the freezing point because it is not soluble in water.

Measuring Principle:

Cool down milk to -3 °C (subcool) and induce crystallization by mechanical impulses. As a consequence of this freezing process, the temperature rises quickly due the released lattice energy. It stabilizes at a certain plateau which corresponds to the freezing point.

Measuring Procedure:

The freezing point of liquids is not just any kind of temperature but it is exactly the temperature at which a part of the sample is in a liquid state and another part of the sample is in a frozen state while both parts are in an equilibrium.

This is why the sample has to be exactly in this specific state to be able to measure the freezing point. This needs a certain procedure that runs as follows:

First cool down the sample below ist freezing point and then trigger the freezing.

Triggering is necessary due to three reasons:

- □ The sample is kept in motion and it cannot freeze by itself.
- □ The sample is mixed well and all parts of it have the same temperature.
- □ The heat in the sample is transported to the outside where it is eliminated by the cooling device.

If a liquid is colder than its freezing point, this state is not stable. We call this state 'metastable'. Even very little actions like knocking at the glass wall with a hard object causes freezing. This continues avalanche-like until the heat of fusion, that is released during the freezing process, increases the temperature of the sample until it reaches the freezing point. Then the frozen parts of the sample and the parts that are not yet frozen are in equilibrium.

This means that a cryoscope has to induce freezing when the sample is sufficiently colder than its actual freezing point. What does 'sufficiently colder' mean? The aim is create that much ice during the freezing process that there are crystals in the whole sample which are of a normal size of ice-crystals. On the other hand, the sample must not be too much frozen. In milk, it turned out to be ideal if freezing was initiated at -2 °C to -3 °C.

After freezing was initiated the temperature of the sample rises because fusion heat is released during the freezing process. It stabilizes at a certain value, which is called 'plateau'. The cooling bath withdraws more and more heat from the sample. Additional parts of the sample freeze to the same extent as this happens, and release their heat of fusion. Thus temperature remains the same, at least as long as there are still liquid parts in the sample. This plateau lasts for some minutes. The cryoscope determines the freezing point from the measured temperature values of the plateau. They are specified in regulations.

Possible Sources of Error during the Measuring Process

Similar to the determination of the freezing point, measuring has to be performed according to a certain procedure whereby mistakes can occur at each step of this procedure.

Errors at cooling down:

If the withdrawal of heat from the sample is too low, cooling down takes too long. This is either caused by the cooling bath or the stirring rod. The cooling bath has to be at least -6°C and must have a good circulation to withdraw the heat from the sample. The stirring rod has to rotate evenly with an amplitude of about 3-4 mm. If there are any errors during the process of cooling, measure the temperature of the cooling bath first. Then take an empty sample flask and check the circulation of the cooling bath. Then check whether the stirring rod can swing freely and does not knock or rub against something. Afterwards, check the amplitude of the stirring rod. CryoStar I features a special menu to do this. The guiding value is not any number of the display. This is just an approximate value. But you have to observe the tip of the swinging stirring rod and adjust it in such a way that the points of regression are about 3.4 mm from each other. Then fill 2.5 ml of water into a sample flask, hold it to the thermistor from below so that the stirring rod stirs the water, and then check whether the rod swings properly in the water.

After you have checked and adjusted all these things, take a test measurement with water and watch the value of temperature on the display. The time needed by the device to cool down the sample from room temperature $(20^{\circ}C...25^{\circ}C)$ to $-2^{\circ}C$ should be almost exactly 1 minute. This means that cooling bath and stirring rod are adequately adjusted.

If the cooling period takes less than 45 seconds, the cooling bath is too cold or the stirring rood is too powerful.

If the cooling period takes more than 75 seconds, the cooling bath is too warm or circulates improperly or the stirring rod is low-powered.

If there is an "error during the cooling period" after cooling bath and stirring rod have been checked for their correct functioning, then it is necessary to check the thermistor or the calibration of the device. If the device is miscalibrated, it does not find its temperature scale and, as a result, cannot measure the correct temperature.

Frozen too early:

The state of the sample is not stable if it is colder than its freezing point. Therefore it might happen that a sample freezes by itself or due to unintentional influences before the device initiates the freezing process. There are different reasons for this: There could be vibrations and freezing might be initiated if the stirrer works too strongly or the stirring rod rubs somewhere. The longer the cooling takes the more time the sample has to freeze by itself. This is why cooling has to be done as fast as possible. If there are contaminants in the sample, they might bring about the freezing.

Not frozen:

As soon as the set temperature for subcooling is reached ('trigger temperature'), the device beats against the glass wall of the sample flask to initiate freezing. The temperature has to rise now. A criterion for a successful crystallization is a temperature increase of at least 0.1 °C. This always happens in water or in calibration solutions if the stirring rod is adjusted in such a way that it beats at the glass wall powerfully This is not always true for milks. There are milks that freeze badly. If this occurs just occasionally in individual samples of milk. then heat the respective milk up to about 40°C again, allow to cool and measure again. But if this error happens guite often, it is better to decrease the "trigger temperature" and to cool down the samples a bit more and freeze more easily. If this error also occurs in calibration solutions, the calibration of the device is wrong or cooling liquid mixed with the sample.

Plateau not found:

This error can only happen if the plateau is "searched" by using the reference method for determination of the freezing point (ISO/DIS 5764). The plateau of the temperature value has to be in a fixed range for a certain period of time. It may happen that a certain type of milk does not fulfill this criterion. Then you have to measure a second sample of this milk. If the same error occurs again although the device works otherwise correctly, the problem lies either with the thermistor or external interferences.

Uncalibrated or defective thermistor:

The device tests the current value of the thermistor when starting a measurement or calibration. Its electrical resistance is a function of the temperature. This electrical resistance is translated into a figure by a ADC (Analogue-Digital-Converter), which is further processed by the device. If there is a short circuit or an

interruption in the thermistor, its resistance is zero or infinite. Both is impossible in a proper working thermistor. The device does not start measuring in such a case. If the temperature resulting from the current value of the thermistor and the calibration constants stored by the device is lower than +1 °C (which cannot happen when the thermistor is in a new, i.e. warm sample.), the device does not start measuring.

Identifying errors by the operator

Most errors that happen in devices for determination of the freezing point result from faulty calibrations. The calibration of a cryoscope is an essential condition for its use. It is necessary to use a thermistor for measuring the temperature of the sample due to the measurement technique. Thermistors have a very strong temperature effect which is necessary for the resolution of more than 1 m°K. Unfortunately, the variation of the resistance value in such components is that high due to manufacturing technique that the zero temperature (0°C) has usually to be determined by pre-calibration before the device can be calibrated with a new thermistor.

We have to assume that an A-calibration cannot be done successfully after the thermistor was exchanged. First the device has to reach the knocking temperature and has to identify a higher temperature after knocking (as an indication that the freezing process started). This is not possible because the values of the new thermistor results in wrong temperatures because it calculates with the calibration constants of the old thermistor. This is why a so-called pre-calibration is necessary when the device ignores the temperatures and follows a merely time-controlled measuring process. Then the calibration constants are adjusted to the characteristics of the new thermistor, which means that A-calibration and B-calibration can be performed successfully.

However, it often happens that sample flasks with the calibration solutions are mixed up or that the wrong item on the menu is selected.

Confusing A-solution with B-solution:

First A-calibration works without problems. When doing the B-calibration the device indicates the error "uncalibrated or defective thermistor" and it remains uncalibrated. With older versions of firmware the device retains the wrong values and is not ready for a measurement from this point of time. You should do a new pre-calibration and a proper calibration in any case.

Confusing A-calibration with B-calibration

The entire temperature scale of the device is subsequently displaced. When remeasuring the calibration solutions you will get reversed values and a reversed sign. Example: Calibration A with 0.000

Calibration A with 0.000 Calibration B with -0.557 Calibration A with -0.557 (faulty operation) Remeasured B-solution: results in 0.000 Remeasured A-solution: results in + 0.557

Defective thermistor

This is the most common mistake. There are two possibilities:

- 1. The thermistor is (was) broken: You can identify this because the display shows constantly a negative value without any changes.
- 2. The bonding of the thermistor is porous: This results in extremely instable measuring. Repeatability is very poor, e.g. variations of about +0,1 °C.

The thermistor has to be exchanged in both cases.

Defect at stirring rod

The stirring rod does not swing freely. The stirring rod has to move freely in the designed slot. It must not touch the thermistor in any place. Pay special attention to this when exchanging the thermistor.

- The stirring rod amplitude is not high enough: The cooling procedure is not continious and it needs more than 1 minute to get - 2 °C. In case of perfectly adjusted stir the time of cooling down procedure needs quite exactly 1 minute. The stirring rod amplitude should be adjusted at 3-4 mm.
 Please adjust the stir once again in case of wrong adjustmend.
- The stirring rod is too high:
 Prefreezing happens quite frequently.

Special applications/measuring of cream

We recommend to increase the sample volume for cream to 3 ml because cream that has a fat content of about 40% has only a 60% sample volume of liquid that is relevant for the freezing point.

CryoStar I

Automatic Freezing Point Determination Reference measurement pursuant to ISO/DIS 5764

Some important features:

Flexible and safe for the future:

Fixed-time measurement, plateau and maximum search are available, all relevant parameters can be freely programmed. They are, of course also recorded. This makes CryoStar I adjustable to all national and international parameters (also future ones).

Comfortable:

Operation is menu-assisted in a language of your choice. At present the following languages are available: German, English, French, Greek, Italian, Polish, Spanish, Turkish and Hungarian.

Efficient:

A new cooling system (application for patent submitted) provides fast operating conditions even if the ambient temperature is higher (ca. 32 °C).

Fast:

Up to 40 samples per hour can be measured depending on the setting.

Multifunctional:

CryoStar I is featuring a parallel connection (for standard printers) and a serial interface to connect it to a PC. Thus it is possible to display and store the freezing-point curve during the measuring process. A powerful zoom function completes the comprehensive design. The respective software is included in the scope of delivery.

Compact:

The CryoStar is small, light and is easy to use. The percentage of water admixture is immediately indicated and printed out. It is equipped with automatic calibration. All settings and calibration values are saved permanently by a non-volatile memory.

Technical data:

Mains supply:	230 V/115 V AC (50 60 Hz)		
	180 W, and 12 V DC		
Measurement resolution:	0.0001 °C		
Repeatability:	± 0.002°C		
Measuring range:	0.000 °C bis –1.500 °C		
Sample volume:	2.0 ml to 2.5 ml		
Recommended value:	2.2 ml		
Sample throughput:	up to 40/h		
	typical 30/h		
Interfaces:	1 x parallel, 1 x serial (RS232)		
Dimensions:	29 x 19 x 38 cm (W x H x D)		
Measuring head:	24 cm (H)		
Weight:	12 kg (net)		

CryoStar I

automatic freezing point determination reference method pursuant to ISO/DIS 5764 see detailed description on page 65

7150

Thermal printer

recording printer (6 V DC) for direct connection to CryoStar I and LactoStar, matching rolls of thermopaper see 7157

7151

Spare thermistor,

for CryoStar I pursuant to ISO/DIS 5764, PVC, white

7152

Software

for CryoStar I (included in scope of supply)

7156

Roll of thermopaper

for thermal printer 7151

7157

Connection cable (12 V DC)

for CryoStar 12-Volt-connection

7159

Calibration standard "A"

0.000 °C, 250 ml in PE bottle

Calibration standard "B"

-0.557 °C, 250 ml in PE bottle

7166

Sample tube

with marking at 2.0 ml, 50 pieces

7167

Rack

material: PPH, for 27 sample tubes

7168

Cooling-bath liquid

500 ml in PE-bottle

7169

Sampling pipette

adjustable between 1.0 ml and 5.0 ml

7174

Pipette tips

for 7174

7175

Spare thermistor

(for CyroStarI please order with no. 7152)

7184 for CyroStar II-LC, III, IV and V

Calibration standard A

-0.408°C, 250 ml in PE bottle

Calibration standard B

-0.600 °C, 250 ml in PE bottle

7187

Control standard C

-0.512°C, 250 ml in PE bottle

7188

Lactometer

Easy to use hand refractometer for internal determination of SNF.

7500

Solubility index mixer

acc. to ADMI- and DLG regulations, with special motor, glass mixing bowl, stainless-steel impeller, timer, continuous operation switch

7610	
7620	Replacement glass mixing bowl
7621	Replacement impeller
7622	Replacement drive belt

Refernce table

ADMI "Scorched Particle Standards of Dry Milks"

Jolting volumeter

Type STAV 2003 for determination of jolting volume of powdered milk, plastic case white, high polish, for determination of jolting volume of powdered milk, plastic casing white highgloss with single-phase AC-motor 220 V/50 Hz with worm drive and capacitor, jolting mechanism with taper lock for measuring cylinder, 5-digit electronic pre-selection counter, On/Off switch with control lamp, operation panel red, silk-mat. The measuring cylinder (250 ml) are standardized by weight and graduation acc. to DIN 53194.

7660

Replacement measuring cylinder

for no. 7660

7661

HTST pasteurization Determination of alkaline phosphatase

Lactognost original pack 7820 with reference table for 100 samples

Lactognost refill pack 7821 with reagents I, II and III for 100 samples

7822 Phosphatesmo MI test paper, 50 stripes per pack

Bucket for udder control

plastic

7910

California Mastitis Test (Schalm Test)

for rapid determination of an increased cell content in milk enabling identification of possible mastitis infection. 2 test trays with 4 dishes, 1 injection flask 250 ml

CMT test liquid

7930 1 litre

7931 5 litre

LOVIBOND Comparator 2000

for determination of chlorine nitrate and nitrite DB 410

8010

Test tube

thick-walled, 160 x 15 x 16 mm, 100 pieces

8100

Rubber stopper

with glass tube and cotton wool

8110

Coli tube

20 x 10 mm, 100 pieces

8120

Durham tube

40 x 8 mm, 100 pieces

8130

Coli test rack

stainless steel, sterilizable

8140

Metering syringe

self suction, 10 ml, for nutrient solutions, sterilizable, see also 5110, 5111, 5112

Sterilization box, stainless steel

8190 300 x 65 mm, for pipettes

8191 420 x 65 mm

CAP-O-TEST seal

various colors

8200

Kapsenberg cap

various colors

8201

Coli strips

8220 1.0 ml, white
8221 0.1 ml, white
8222 1.0 ml, green

Dilution flask

borosilicate glass 3.3, 250 ml, with glass rod and silicon stopper, sterilizable

8290

8291 Flask only

Dilution pipettes

8300 1.1 : 0.1 ml

8301 1.0 + 1.1 ml, acc. to Demeter with 2 ring marks

8302 1.0+2.0+2.1+2.2 ml, acc. to Demeter with 4 ring marks

8303 1.0 + 1.1 + 1.2 ml, acc. to Demeter with 3 ring marks

glass, 100 x 20 mm

Petri dish

plastic (disposable), sterile packing

8312	Ø 60 x 15 mm, 600 pieces, with vent cams
------	--

8313 Ø 94 x 16 mm, 1000 pieces,

8314 Ø 94 x 16 mm, 100 pieces, without vent cams

8315 Ø 145 x 20 mm, 165 pieces, with vent cams

Sterilizing box

with insert, stainless steel, for glass Petri dishes

8320

Wire cages

for sterilization

8330 100 x 100 x 100 mm 8331 140 x 140 x 140 mm

8332 200 x 200 x 200 mm

Smear needle

rectangular bend

8340

Spatula, Drigalsky type

glass

8350

Inoculation wire

stainless steel, 1 m

Burri loop

platinum, calibrated

8380 0.001 ml 8381 0.01 ml

Needle holder

for inoculation-wire loop

8382

Slide

76 x 26 mm, half-white, cut edges 50 pieces

8400

Cover glass

18 x 18 mm

8401

Tweezers for slides

8410

Staining stand

acc. to Bongert

8420

Staining cuvette

rectangular

8430

Wire mesh

8440 with ceramic center

8441 without ceramic center

Tripod for Bunsen burner

8450

Bacterial colony counter ColonyStar

easy to clean plastic casing, adjustable in height with directly or indirectly illuminated area of 145 mm Ø, glare-free, frosted glass and clear glass plate with cm²- and 1/9-cm² graduation, electric counting and marking felt pen. Petri dishes up to 145 mm Ø can be used. Smaller Petri dishes can be used together with the supplied reducing insert. 220 V/50 Hz, 25 x 23 x 7.5 cm, 1.7 kg ColonyStar inclusive all accessories (8501, 8503, 8504, 8505)

8500

- 8502 ColonyStar without accessories
- 8503 Automatic counting pen
- 8504 Felt refill, replacement part for 8503
- 8505 Clear glass plate with dark field

Bench autoclaves

with electromagnetic control

8510	1730 ML	170 x 300 mm,	7.5 l, 220-240 V, 1.3 kW	
8512	2540 ML	250 x 420 mm,	23 l, 220–240 V, 2.2 kW	
8513	3850 ML	380 x 510 mm,	62 l, 380–400 V, 4.0 kW	
8514	3870 ML	380 x 690 mm,	85 l, 380–400 V, 4.8 kW	
8515	5050 ML	500 x 500 mm,	110 l, 380–400 V, 4.8 kW	
8516	5075 ML	500 x 750 mm,	160 l, 380–400 V, 7.2 kW	

Bench autoclaves with microprocessor control

8517	1730 EL	170 x 300 mm,	7.5 l, 220–240 V, 1.3 kW
8518	2540 EL	250 x 420 mm,	23 l, 220–240 V, 2.2 kW
8519	3850 EL	380 x 510 mm,	62 l, 380–400 V, 4.0 kW
8520	3870 EL	380 x 690 mm,	85 l, 380–400 V, 4.8 kW
8521	5050 EL	500 x 500 mm,	110 l, 380–400 V, 4.8 kW
8522	5075 EL	500 x 750 mm,	160 I, 380–400 V, 7.2 kW

Stand autoclaves with electromagnetic control

8523	2540 MLV	250 x 400 mm, 23 l, 220-240 V, 2.2 kW
8524	3850 MLV	380 x 490 mm, 62 l, 380 – 400 V, 6.0 kW
8525	3870 MLV	380 x 690 mm, 85 l, 380 - 400 V, 6.0 kW
8526	5050 MLV	500 x 500 mm, 110 l, 380 - 400 V, 9.0 kW
8527	3875 MLV	500 x 750 mm, 160 l, 380 – 400 V, 9.0 kW
8527	3875 MLV	500 x 750 mm, 160 l, 380 – 400 V, 9.0 kW

Stand autoclaves with microprocessor control

8528	2540 MLV	250 x 400 mm,	23 l, 220–240 V, 2.2 kW
8529	3850 MLV	380 x 490 mm,	62 l, 380–400 V, 6.0 kW
8530	3870 MLV	380 x 690 mm.	85 l, 380–400 V, 6.0 kW
8531	5050 MLV		110 I, 380 – 400 V, 9.0 kW
0001		000 x 000 mm, 1	101,000 400 4,0.0 101
8532	5075 MLV	500 x 750 mm, 1	60 I, 380–400 V, 9.0 kW

Portable bench autoclave

for rapid and efficient steam sterilization at 140 °C/2.7 bar or 125 °C/1.4 bar. Also suitable for autoclaving of small amounts of culture media. Special valves for 115 °C/0.7 bar and 121 °C/1.1 bar are available on request.

220-230 Volt, 50-60 Hz, 1.6 kW to 1.75 kW, AI silk gloss, polished, thermostatic temperature control, checked safety (GS)

CV-EL 10 L volume 10 l, diameter 24 cm, internal height 22 cm, 8540 max. working space Ø 30 cm

CV-EL 12 L

volume 12 l, Gewicht 6.1 kg, diameter 24 cm,

8541 internal height 24 cm, max. working space Ø 32 cm

CV-EL 18 L volumen 18 I, Gewicht 7.7 kg, diameter 24 cm, 8542 internal height 38 cm, working space Ø 43 cm

8543 Sieve basket

8544 Instrument plate

Starter culturing devices

for cultivation of individual dairy-farm cultures 8 different sizes from 1 x 5 I to 4 x 20 I, stainless steel-culture vessels 5 I with cover and mixer, PP casing, microprocessor controlled

- 8610 1 x 5 | vessels, 2 x 0.5 | starter culture flasks
 8611 2 x 5 | vessels, 2 x 0.5 | starter culture flasks
- 8612 4 x 5 I vessels, 4 x 0.5 I starter culture flasks
- 8613 1 x 10 I vessels, 2 x 0.5 I starter culture flasks
- 8614 2 x 10 l vessels, 2 x 0.5 l starter culture flasks
- 8615 4 x 10 l vessels, 4 x 0.5 l starter culture flasks
- 8616 2 x 20 l vessels, 2 x 0.5 l starter culture flasks
- 8617 4 x 20 l vessels, 4 x 0.5 l starter culture flasks

Magnetic stirrer MONO

without heating, 1 - 3000 ml capacity (H20), 100 - 1000 rpm, dimensions 150 x 200 x 35 mm, 1.4 kg, plug connection for 115 or 230 V AC/50 - 60 Hz included in scope of delivery

Magnetic stirrer MONOTHERM

with heating, 1 – 3000 ml capacity (H20), 100 – 1000 rpm, dimensions 160 x 295 x 60 mm, 2.5 kg, 230 V AC / 50 Hz, 115 V AC / 60 Hz by special order

8691

Sieve machine AS 200 basic

for separation, fractionation, particle-size determination, dry and wet for powder, bulk goods and suspensions from 20 μ m to 25 mm, 9 or 17 fractions, max. 3 kg screen feed, diameter of sieve 100/150/200/203 mm (8") are possible 400 x 840 x 347 mm, ca. 30 kg

8710

Spanning unit

8711 Standard for 200 mm sieves

 $\begin{array}{l} \mbox{Standard sieve set with sieves diameter 200 mm,} \\ \mbox{height 50 mm, pursuant to DIN/ISO 3310/1 with mesh} \\ \mbox{sizes } 45-63-125-250-500-1000-2000-4000 } \mu m \\ \mbox{8712} \\ \mbox{ and bottom jar} \end{array}$

Sieves various pursuant to DIN/ISO 8713 or ASTM on request

Laboratory microscope Standard

binocular transmitted-light microscope transverse vision rotatable by 360°, infinitely variable Halogen lamp (10W), condenser N.A. 0.65 with iris diaphragm, quadruple revolving nosepiece, coaxial coarse and fine focusing control, specimen traverse, plug connection, protective cover. Achromatic objectives: 4/0.10; 10/0.25; 40/0.65; 100/1.25 oil Eyepieces WF 10x/18; 1x with pointer; 1x without pointer,

8760

Laboratory microscope Professional

higher operational convenience and better focusing control by stationary mechanical stage and condenser N.A. 1.2 with iris diaphragm

8761

Trinocular microscope

additionally to type Professional with trinocular sliding beak

8762

Automatic water distillation apparatus

for generation of distilled water with conductivity of under 2.3 μ S/cm at +20 °C. Efficient energy consumption by using the cooling water heated up to 80 °C.

The apparatus is completely manufactured from stainless steel 1.4301. It is delivered including wall mount fixture and water supply and discharge hoses.

Distillation volume: 4 l/h Storage container: 4 l Cooling-water consumption: 50 l/h 220 V/50 Hz; 3.2 kW Dimensions: 510 x 460 x 230 mm

8771 Weight: 13 kg

Distillation volume: 7 l/h Storage container: 7 l Cooling-water consumption: 70 l/h 220 V/380 V/50 Hz; 4.8 kW Dimensions: 670 x 500 x 340 mm

8772 Weight: 19 kg

Water distillation apparatus, Mono, glass type

Distillation volume: 3.5 l/h Cooling-water consumption: 45 l/h Conductance: 0.85 μ s ca. 600 x 200 x 180 mm, 4 kg

8775

Water bath

7 I with gable cover, stainless steel 240 x 210 x 140 mm, ca. 11 kg

8786

Water bath

22 I with gable cover, stainless steel 350 x 290 x 220 mm, ca. 17 kg

8788

Beaker,

short, borosilicate glass, with markings and spout

8800	50 ml	
8801	100 ml	
8802	250 ml	
8803	400 ml	
8804	600 ml	
8805	800 ml	
	1000 ml	
0000	1000 111	

Beaker,

tall, borosilicate glass, with markings and spout

8808	50 ml	
8809	100 ml	
8810	250 ml	
8811	400 ml	
8812	600 ml	
8813	800 ml	
8814	1000 ml	
8815	2000 ml	

Erlenmeyer flasks

narrow neck, borosilicate glass, with markings, DIN 12380

8817	50 ml	
8818	100 ml	
8819	200 ml	
0019	200 111	
8820	250 ml	
8821	300 ml	
0021	000 111	
8822	500 ml	
0000	1000	
8823	1000 ml	
8824	2000 ml	

Erlenmeyer flasks

wide neck, borosilicate glass, with markings, DIN 12385

8826	50 ml	
8827	100 ml	
0021	100 111	
8828	200 ml	
0000	050 ml	
8829	250 ml	
8830	300 ml	
0001	500	
8831	500 ml	
8832	1000 ml	
	0000	
8833	2000 ml	

Measuring cylinder, tall

glass, with spout

8850	50 ml :	1/1	
8851	100 ml :	1/1	
8852	250 ml :	2/1	
8853	500 ml :	5/1	
8854	1000 ml :	0/1	

Measuring cylinder, tall

PP, blue graduation

8855	50 ml :	1/1			
8856	100 ml :	1/1			
8857	250 ml :	2/1			
8858	500 ml :	5/1			
8859	1000 ml :	10/1			
	2000 ml : 2				
0000	2000 111 . 2	20/1			

Mixing cylinder

AR glass, round stem, with NS-PE stopper

8862 100 ml : 1/1 8863 250 ml : 2/1

Measuring flask

borosilicate glass, with ring mark, DIN 12664, calibrated to "In"

8870	25 ml	
8871	50 ml	
8872	100 ml	
8873	250 ml	
8874	500 ml	
8875	1000 ml	

Glass funnel

AR glass, smooth, short stem with oblique end, DIN 12445

8876	55 mm Ø
8877	100 mm Ø
8878	150 mm Ø
8879	200 mm Ø

Measuring pipettes

Color-Code, AR-Glas

8882	1 ml : 1/100
8883	2 ml : 1/50
8884	5 ml : 1/10
8885	10 ml : 1/10
8886	25 ml : 1/10
8887	50 ml : 1/5

Volumetric pipettes

Color-Code, AR-Glas

8888	1 ml		
8889	2 ml		
8890	5 ml		
8891	10 ml		
0001	10 111		
8892	20 ml		
8893	25 ml		
8894	50 ml		
8895	100 ml		

Laboratory bottles

borosilicate glass, with ISO-threads, graduation, with PPN screw cap and PPN pouring ring (blue)

8970	100 ml	
8971	250 ml	
8972	500 ml	
8973	1000 ml	
8974	2000 ml	

Reagent bottles, wide neck

AR glass, white with standard ground and joint stopper

8980	50 ml, NS 24/20
8981	100 ml, NS 29/22
8982	250 ml, NS 34/35
8983	500 ml, NS 45/40
8984	1000 ml, NS 60/46
8985	2000 ml, NS 60/46

Reagent bottles, narrow neck

AR glass, white with standard ground and joint stopper

8990	50 ml, NS 14/15
8991	100 ml, NS 14/15
8992	250 ml, NS 19/26
8993	500 ml, NS 24/29
8994	1000 ml, NS 29/22
8995	2000 ml, NS 29/32

Culture tubes

DURAN glass, straight rim 16 x 160 mm, 100 pieces

9050

Culture tubes

with ISO-thread, with screw caps, AR glass, sterilizable

9054 16 x 100 mm, 100 pieces

9056 16 x 160 mm, 100 pieces

Test tubes

9080 DURAN glass, 16 x 160 mm, without rim, 100 pieces

9081 DURAN glass, 16 x 160 mm, with rim, 100 pieces

9090 Test tube brush with wool head

Weighing dishes

low shape, with knob lid

9120	35 x 30 mm
9121	50 x 30 mm

Digital burette μ I 10

certificated conformity to 100 ml, smallest adjustment 10 $\mu l.$

9190

Desiccator

9211 **Desiccator plate**, porcelain

Wash bottles

Polyethylene

9230	100 ml	
9231	250 ml	
9232	500 ml	
9233	1000 ml	

Funnels

Polyethylene

9235	50 mm Ø	
9236	70 mm Ø	
9237	100 mm Ø	
9238	120 mm Ø	
9239	150 mm Ø	
0200		

Test tube racks

plastic, for tubes 160 x 16 mm

9255 12 samples

9256 25 samples, PP, sterilizable to 121 °C

9257 36 samples, wire, plastic coated

Lyphan stripes

in plastic box

9360	pH 1-11
9361	pH 3.9-6.9
9362	pH 4.9 – 7.9
9363	рН 6.9-9.9
9364	pH 0-14

Indicator paper

for freshness of milk, Duplex, pH 7.9-11, 100 pieces

9365

Burette stand

9400 plate 210 x 130 mm with rod 750 mm

9401 tripod 210 x 130 mm with rod 750 mm

Bosshead

9405

Bosshead

9406 swivel type

Clamps

9407 25 mm, without bosshead

9408 60 mm, without bosshead

Retort ring

160 mm, with bosshead

9409

Burette clamps

9410 single, with bosshead

9411 double, with bosshead

Laboratory clock

0-60 Min., with alarm

9440

Laboratory vacuum pump/compressor

electrical, applicable as vacuum or pressure pump, capacity max. 16 l/min., max. operating pressure 3.5 bar

9470

Dispensers

semi-automatic, for aggressive acids and lyes without flask

9480	0.4 – 2	ml : 1/10
9481	2-10	ml : 1/5
9482	10-50	ml : 1/1
9483	20 - 100	ml : 2/1

Microlitre pipettes

with fixed volume in sizes from 5 to 1000 μl

9490

Microlitre pipettes

with variable volume, with tip release

9496 20-200 μl

9497 200 – 1000 μl

Pipette tips

9510 1-200 μl (yellow), 1000 pieces

9511 50 – 1000 μ l (blue), 1000 pieces

FUNCE GERBER

Articel	Cat. no.	Page	Articel	Cat. no.	Page
ADMI-tubes	3634	27	Butyrometer for milk	3151	18
Alcoholmeter with thermometer	6710	57	Butyrometer for milk-powder / TEICHERT	3170	19
Aluminium round foil 130 x 0.03 mm	5712	51	Butyrometer for skim-milk	3160	18
Aluminiumfoil 150 x 190 mm	5470	48	Butyrometer stand, plastic	3330	23
Analytical balance	5810	51	Butyrometer stand, stainless steel	3717	31
Autoklaves, bench top	8510	74	Butyrometer tubes clossed	3766-G	32
Autoklaves, portable	8540	76	Butyrometer tubes for Nova Safety	3641	27
Autoklaves, vertical	8523	75	Butyrometer tubes open	3766-O	32
Automatic dispenser PERMANENT	3390	24			
			CAP-O-TEST seals	8200	71
Babcock bottles	3256	21	Calibration standard $A = -0.408$ °C	7186	67
Babcock buckets	3632	26	Calibration standard $A = 0.000$ °C	7165	66
Bag Mixer	3140	9	Calibration standard $B = -0.557$ °C	7166	67
Balances	5810	51	Calibration standard $B = -0.600$ °C	7187	68
Battery-/pocket pH meter	4315	41	Calibration standard $C = -0.512^{\circ}C$	7188	68
Beaker, glass	8800	79	Centrifuge tube acc. to FRIESE	3638	27
Brush for butyrometer	3324	23	Cheese beaker with holes	3321	23
Brush for pipettes	3470	26	Cheese butyrometer acc. to VAN GULIK	3230	20
Brush for sample bottle	3080	8	Cheese trier	3120	8
Bucket for udder control	7910	69	Circulation bath	5630	50
Buckets for ADMI-test	3633	26	Clamps	9407	86
Buffer solution	4390	42	Cleaner for combined electrodes	4420	43
Bunsen burner	5550	49	Cleaning brush for butyrometer	3325	23
Burette clamps	9410	86	Cleaning brush for pipettes	3470	26
Burette stand	9400	85	Coli strips	8220	71
Burette, digital	9190	84	Coli test tube	8120	70
Burri loop, platinum	8380	73	Coli test rack	8140	70
Butter cutter	5605	49	Colony counter ColonyStar	8500	74
Butter test spoon	5450	48	ColonyStar	8502	74
Butter trier	3130	8	Color disc for resazurine	5161	47
Butter-melting beaker	5400	48	Control thermometer	7070	59
Buttermilk tester	6640	56	Cooling-bath liquid	7169	67
Butyrometer acc. to VAN GULIK	3230	20	Counting pen	8503	74
Butyrometer for food	3250	21	Cover glass, 18 x 18 mm	8401	73
Butyrometer for free-fat testing	3252	21	CryoStar I, Cryoscope	7150	66
Butyrometer for ice-cream, condensed milk	3180	19	Crystal quartz sand	5460	48
Butyrometer buckets for SuperVario-N	3631	26	Culture tubes DURAN-Glass	9050	83
Butyrometer for butter	3220	20	Culture tubes with screw caps	9054	83
Butyrometer for cream acc. to KÖHLER	3210	20			
Butyrometer for cream acc. to ROEDER	3200	19	Dairy thermometer	7001	58
Butyrometer for cream acc. to SCHULZ-KLEY	3208	20	Delvotest SP	6570	54
Butyrometer for cream and ice-cream	3189	19	Demeter pipettes	8301	71
Butyrometer for curd (quarg) 0-20%	3240	20	Desiccator, glass 250 mm	9201	84

Articel	Cat. no.	Page
Digital thermometer	7120	60
Digital-burette	9190	84
Dilution flask	8290	71
Dilution pipettes	8300	71
Dipper	3030	7
Discharge viscosimeter	6520	54
Dispenser	9480	86
Dispenser for fat testing	3390	24
Disposable bags for BagMixer	3141	9
Double-ended spatula, pure nickel	5440	48
Drigalski spatula	8350	72
Dry-matter calculator	5360	47
Durham tube	8130	70
Electrode for ph-testing of milk	4350	42
Electrode with temperature sensor	4380	42
Erlenmeyer flasks	8817	80
Extraction tube acc. to MOJONNIER	3870	33
FIBU patent closure	3260	21
Felt refill for 8503	8504	74
Filter papers for sediment test	4910	46
Filter, round	4911	46
Foil press	5711	51
Freezing-point tester/Cryoscope	7150	66
Funnels, glass	8876	81
Funnels, plastic	9235	85
Furnace	6220	54
GERBAL patent closure	3261	21
Glass-fiber filter	5713	51
Glass-nail for milk powder butyrometer	3315	22
Grinder	3137	9
Head A for butyrometer / babcock bottles	3685	30
Head B for 8 mojonnier tubes	3686	30
Head C for 6 solubility buckets	3687	30
Hydrometer	6740	57
Hydrometer for Milch	6620	55
Hydrometer for amyl alcohol	6720	57
Hydrometer for boiler feed water	6690	56
Hydrometer for boiler water	6700	56
Hydrometer for brine/Beaumé	6680	56

Articel	Cat. no.	Page
Hydrometer for butter milk	6650	56
Hydrometer for condensed milk	6660	56
Hydrometer for jogurt und chocolate milk	6670	56
Immersion temperature sensor	7122	60
Incubators	6035	53
Incubators for starter cultures	8610	76
Indicator paper, Duplex	9365	85
Infrared burner	5571	49
Inhibitor tester Delvotest SP	6570	54
Inoculation wire	8370	72
Jar for Lactodensimeter	6800	57
Jar with cardanic suspension	6810	57
Jolting volumeter	7660	69
KCL-Solution	4400	43
Kapsenberg cap	8201	71
Key for patent closure FIBU	3270	22
Key for patent closure GERBAL	3271	22
Key for patent closure NOVO	3272	22
Kjeldahl Distillation apparatus	4210	40
Kjeldahl digestion apparatus	4220	40
LOVIBOND Comparator	8010	70
LOVIBOND Comparator for resazurine	5160	47
Laboratory bottles	8970	82
Laboratory clock	9440	86
LactoStar	3560	26
Lactodensimeter	6600	55
Lactodensimeter acc. to QUEVENNE	6630	55
Lactognost (alkaline Phosphatase)	7820	69
Lactometer	7500	68
Low-temperature thermometer	7081	59
Lyphan stripes	9360	85
Magnetic stirrer	8690	76
Magnetic stirrer with heating	8691	77
Magnifier with stand	8501	74
Mastitis test	7920	69
Maximum-minimum thermometer	7095	59
Measuring cylinder for jolting volumeter	7661	69
Measuring cylinder, glass	8850	80

FUNCE GERBER

Articel	Cat. no.	Page	Articel	Cat. no.	Page
Measuring cylinder, plastic	8855	81	Protective shaking hood	3340	23
Measuring flask	8870	81	Protein titre apparatus	4660	44
Measuring pipettes	8882	82	Psychrometer acc. to FLEISCHMANN	7100	60
Metering syring	8170	70	Pump head for LactoStar	3560-023	26
Methylen blue tablets	5140	47			
Microliter pipettes, fxed volume	9490	87	Rack for sample tubes	7168	67
Microliter pipettes, variable	9495	87	Rapid burette acc. to Dr SCHILLING	4680	45
Mikroscope, Professional	8761	78	Reactivation solution	4422	43
Mikroscope, Standard	8760	78	Reagent bottle	8990	83
Milk powder sampler	3125	8	Reductase insert	3737	32
Milk sample bottle, glass	3040	7	Reductase test tubes	5040	46
Milk sample bottle, plastic	3041	7	Reference table	4920	46
Milk sampler	3000	7	Reference table ADMI	7650	68
Milk stirrer, stainless steel	3021	7	Refractometer (Digital Abbe refactometer)	5620	50
Mixer	3135	9	Refraktometer (Digital hand refractometer)	5614	50
Mixing bowl, glass	7620	68	Refrigerator thermometer	7060	59
Mixing cylinder AR-Glas	8862	81	Replacement cylinder for syrings	3451	25
Moisture tester MA 30	5710	51	Resazurine tablets	5150	47
Mojonnier tube	3870	33	Retord ring	9409	86
			Rubber stopper with glas tube	8110	70
NOVO patent closure	3262	21	Rubber stoppers for milk butyrometer	3280	22
Needle holder	8382	73	Rubber stoppers for milk powder butyrometer	er 3310	22
NovaSafety, bench centrifuge	3670	27	Rubber stoppers for milk sample bottle	3050	8
			Rubber stoppers for test tube	5060	46
PH meter	4310	41	Rubber stoppers with hole for butyrometer	3300	22
Patent closure FIBU	3260	21	Rubber stoppers, smal for butyrometer	3290	22
Patent closure GERBAL	3261	21			
Patent closure NOVO	3262	21	SALUT milk tester	4700	45
Petri dishes, disposable	8312	72	Safety goggles	3480	26
Petri dishes, glass	8310	71	Safety reading lamp	3800	32
Phosphatestmo MI (alkal.Phosphatase)	7822	69	Salt tester for butter and cheese	4760	45
Pipette stand	3460	25	Sample tube with mark at 2.0 ml	7167	67
Pipette tips for sampling pipette	7175	67	Sampling Pipette, 1.0 ml - 5.0 ml	7174	67
Pipette tips yellow	9510	87	Schalm Test	7920	69
Pipetting syringes	5110	47	Sediment tester ASPILAC	4905	46
Pocket pH meter	4315	41	Sediment tester REVAMAT	4900	46
Pocket refractometer	5610	50	Sediment tester SEDILAB	4800	45
Polymeter (hair hygrometer)	7110	60	Shaking machine	3850	33
Porcelain plate for desiccator	9211	84	Shaking rack	3332	23
Pour plate for butyrometers	3350	24	Shaking water bath	3550	26
Power cable (12 V DC) for CryoStar	7159	66	Sieve machine	8710	77
Precision butyrometer 0 – 4 %	3150	18	Sieves	8713	77
Precison balance	5820	51	Slides	8400	73

Articel	Cat. no.	Page
Smear needle	8340	72
Software for CryoStar I	7156	66
Solubility index mixer	7610	68
Solubility index tubes, ADMI	3634	27
Solubility index tubes, special type	3637	27
Spare thermistor for CryoStar I	7152	66
Spare thermistor for CryoStar II-LC, III, IV, V	7184	67
Spirit lamp	5580	49
Staining cuvette	8430	73
Staining stand acc. to BONGERT	8420	73
Stand for 8 Mojonnier tubes, wooden	3875	33
Stand for ADMI tubes	3636	27
Stand for Mojonnier tubes in water bath	3718	31
Stand for dispenser Permanant	3400	24
Stand for electrodes	4410	43
Stand for pipettes	3460	25
Stand with cardanic suspension	6830	58
Starter culturing devices	8610	76
Steam-heated distillation apparatus	4230	40
Sterilization box for petri dishes	8320	72
Sterilization box for pipettes	8190	71
Sterilizers	6047	53
Stick-in ph-elektrode	4360	42
Stick-in temperature sensor	7122	60
Stirring rod, glass	5430	48
SuperVario-N, multi-purpose centrifuge	3680	30
Syring for 10.75 ml milk	3440	25
Temperatur sensor for frozen goods	7125	60
Temperature sensor for WTW 330 and 340	4335	42
Temperature sensor for food	7123	60
Temperature sensor for pH 911, 912 and 913	4319	41
Test tube rack	9255	85
Test tube thick-walled	8100	70
Test tube, DURAN-glass	9080	83
Thermal printer, recording printer	7151	66
Thermistor for CryoStar I	7152	66
Thermistor for CryoStar II-LC, III, IV, V	7184	67
Thermometer	7000	58
Thermopaper	7157	66
Tilt measure Superior	3420	24
Tips for sampling pipette 1.0 - 5.0 ml	7175	67
Titration equipment for cream	4501	43

Articel	Cat. no.	Page
Titration equipment for milk	4500	43
Tongs for aluminium beaker	5420	48
Trinokularmikroskop	8762	78
Tripod for bunsen burner	8450	74
Tweezers for slides	8410	73
Universal ovens	6000	52
Universal shelf for WB 436	3727	32
Universal-Thermometer	7045	59
Vakuum pump/Compressor	9470	86
Visco Tester	6530	54
Volumetric pipettes for fat testing	3430	24
Volumetric pipettes for general purpose	8888	82
WB 436-A Universal-Waterbath (analog)	3708	31
WB 436-D Universal-Waterbath (digital)	3707	31
Wash bottle, plastic	9230	84
Water distillation apparatus	8771	78
Water distillation apparatus, glass type	8775	78
Waterbath 7 I	8786	79
Waterbath 22 I	8788	79
Waterbath WB 436	3707	31
Wator-Paper	5600	49
Weighing beaker for butter	3323	23
Weighing beaker for cheese	3321	23
Weighing beaker for cream	3320	23
Weighing boat for butter	3322	23
Weighing dish	5490	48
Weighing dishes	9120	84
Wire cages	8330	72
Wire cradle for milk bottles	3091	8
Wire mesh	8440	73

Terms and Conditions of Delivery and Payment

- The following terms and conditions are relevant for each placed order. Any modification is only valid if it was explicitly confirmed by us in writing. Any agreement that was made orally by phone or through a sales representative is only valid after written confirmation.
- 2. All our offers are subject to changes with regard to prices, quantities, possibilities and time of delivery.
- 3. All prices are EX WORKS Berlin.
- 4. The invoice total becomes due not later than 30 days after the date of issue regardless of any notice of defects.
- 5. The goods remain the property of the seller until all payments, including future claims, are made.
- 6. Indicated times of delivery in our offers are approximate and are subject to changes. The delivery time starts with the date of the order's confirmation but not before there is a final agreement about the order in writing. Fortuitous events (force majeure) and incapacity through no fault of us or our subcontractors entitle us to prolong the delivery time appropriately or to withdraw from the contract for sale without resulting claims for damage on the part of the buyer.

A claim for damages by the buyer resulting from delayed delivery is excluded, also after the end of an extension time that was determined by the buyer.

The buyer should only declare a withdrawal if we are in default and do not meet our delivery deadline culpably during an adequate extension time that was fixed by the buyer in writing.

- 7. Goods are delivered at the risk of the buyer. The risk should be transferred to the buyer as soon as the goods or the order leaves the works.
- 8. We grant a warranty period of 6 months from the date of invoice for perfect working of the instruments and devices that were delivered by us. The warranty is limited to such defects of the instruments and devices that were not caused by natural wear or improper operation or handling.Warranty should either be repair or replacement of the objected device which remains at our discretion. A claim to redhibition or reduction is excluded.

Shipment of instruments, devices and spare parts shall be payable by the buyer. Return shipment of repaired or replaced parts shall be payable by the seller.

Any obligation to warranty should expires if the buyer or a third party changes or repairs the instrument or device.

- 9. Complaints due to incomplete or incorrect deliveries or complaints because of visible defects should be stated in writing immediately but not later than 8 days after the goods were received. Defects that become apparent later are to be stated immediately after they were discovered. If the statement is not made in time, all warranty claims should expire.
- 10. Place of delivery and performance is Berlin and any disputes arising hereunder will be settled before a competent Berlin court of law. German law is applied. An annulment of any part of these terms and conditions does not result in its overall annulment.